How minerals react in the environment depends on particle size

One of the most common groups of minerals on earth is the iron oxides, found in soils, rusting iron, and the dust of Mars.

Due to their importance in the environment, iron oxide minerals have been widely studied, providing insight into their properties and reactivities. But when the size of minerals decreases to 1 to 10 nanometers (billionths of a meter), many of their properties change. Andrew Madden of Blacksburg, a Ph.D. student in geosciences at Virginia Tech, will report on the nanoscale properties of iron oxide at the 227th national meeting of the American Chemical Society, being held in Anaheim, Calif., March 28 through April 1, 2004.

“Geoscientists now recognize that there are small particles in our environment, but we don’t know their properties at the nanoscale,” says Madden. He is doing his experiments using hematite, the same iron oxide associated with Mars.

He is studying the reaction between dissolved manganese and oxygen, a process known as manganese oxidation. The rate of the reaction is greatly enhanced by minerals such as hematite. This process is responsible for removing dissolved manganese from water and forming manganese oxide minerals, which are extremely important in adsorbing and transforming a variety of pollutants, such as lead, nickel, cobalt, and pesticides.

Manganese is everywhere – in soils, rivers, oceans, and lakes – and its oxidation depends upon the solid with which it interacts. How is this interaction different at the nanoscale? So far, Madden has found that nanoparticles are 30 times more efficient at promoting the manganese oxidation reaction than the same material in bulk.

One consequence of the research is the questioning of a long-held assumption about manganese oxidation – that the process requires bacteria because it is much slower in the absence of bacteria. But maybe it is particle size and not bacteria that influences the speed of the process in some environments.

“Reactivity is controlled by the electrons and electronic structure of the particles, which changes as the particle gets smaller,” Madden explains. In a smaller hunk of matter, more of the atoms are at the surface. In the research circumstances, the iron oxide gave up electrons to the manganese, making them more susceptible to reaction with dissolved oxygen.

Madden says he can’t say yet what might happen as a result of such interactions. “We expect to synthesize smaller particles and see an even more efficient reaction.”

Madden will present the paper, “Testing geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles (GEOC 92)” at 5:30 p.m. Tuesday, March 30, at the Marriott — Marquis NW as the last presentation of the symposium on Interfacial Phenomena: Linking Atomistic and Macroscopic Properties, Co-author is Virginia Tech professor of geosciences Michael F. Hochella Jr.

Madden is a member of the Hochella NanoGeoscience and mineral-microbe research group. He became a Ph.D. candidate in geosciences in fall 2000 and was awarded a National Science Foundation fellowship in 2001. His undergraduate degree is from Michigan State University, and he worked at Dart Oil and Gas in Mason, Mich., while at MSU.

Media Contact

Susan Trulove EurekAlert!

More Information:

http://www.technews.vt.edu/

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Simplified diagnosis of rare eye diseases

Uveitis experts provide an overview of an underestimated imaging technique. Uveitis is a rare inflammatory eye disease. Posterior and panuveitis in particular are associated with a poor prognosis and a…

Targeted use of enfortumab vedotin for the treatment of advanced urothelial carcinoma

New study identifies NECTIN4 amplification as a promising biomarker – Under the leadership of PD Dr. Niklas Klümper, Assistant Physician at the Department of Urology at the University Hospital Bonn…

Partners & Sponsors