Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone-destroying gas in atmosphere increased significantly during Industrial Age, study shows

24.03.2004


By examining trapped air bubbles in an ice core, researchers extend atmospheric record of methyl bromide over 300 years


Photograph by: Melanie Conner, National Science Foundation



Human activity in the Industrial Age – approximately the last 150 years – has significantly increased atmospheric levels of methyl bromide, a gas known for harming the ozone layer in the Earth’s stratosphere.

A research team led by UC Irvine scientist Eric Saltzman reached this conclusion after examining an ice core recovered from Antarctica. By studying air bubbles trapped in the core, Saltzman’s team was able to compare levels of methyl bromide in the atmosphere over the last three centuries. The team concluded that during the industrial era, the amount of global atmospheric methyl bromide in Southern Hemisphere air appears to have increased by 3.5 parts per trillion, or approximately 50 percent of the preindustrial level of the gas.


The researchers report their findings in the March 2, 2004, issue of the Journal of Geophysical Research – Atmospheres.

In the study, the researchers utilized 23 samples of shallow ice core drilled in 1995 in Siple Dome, West Antarctica, as part of a National Science Foundation-sponsored ice coring project in the West Antarctic ice sheet. Air was extracted from the samples in Saltzman’s laboratory at UCI and analyzed using gas chromatography/mass spectrometry, a powerful analytical technique.

“We found trace levels of methyl bromide dating back to the late 1600s in the core’s air bubbles,” said Saltzman, professor of Earth system science. “This longer-term record of methyl bromide shows convincingly that the amount of methyl bromide in the atmosphere increased during the industrial era. The reconstruction of ancient atmospheric levels of methyl bromide is an exciting development. Ice core records can provide insights into the natural variability of methyl bromide and shed light on how sensitive its atmospheric cycle is to climate change.”

Previous records of methyl bromide in the atmosphere – a compilation of instrumental records and firn air measurements – had only extended back to about the year 1900. (Firn is rounded, well-bonded snow that is older than one year.)

The researchers also developed a numerical model to simulate major processes involved in the global biogeochemical cycle of methyl bromide. Both the ice core measurements and modeling results show that human activities such as fumigation, combustion and biomass burning in industrial times have significantly increased atmospheric levels of this gas. “They also highlight the large uncertainty still remaining in our understanding of the modern atmospheric methyl bromide budget,” Saltzman said.

Methyl bromide is a fumigant used to control insects, nematodes, weeds and pathogens in crops, forests and wood products. Its primary uses are for soil fumigation, postharvest protection and quarantine treatments. The gas also has natural sources in both terrestrial and oceanic environments, as well as natural “sinks” that can remove methyl bromide from the atmosphere. It is the only chemical included in the Montreal Protocol – the international agreement designed to protect the Earth’s stratospheric ozone layer – that has major natural sources. Understanding the natural sources and sinks of methyl bromide is a focus of current research, as is gaining a greater understanding of other gases harming the ozone layer, which protects the Earth from ultraviolet radiation.

Researchers Murat Aydin of UCI; Warren J. De Bruyn of Chapman University, Orange, Calif.; Daniel B. King of Drexel University, Philadelphia, Pa.; and Shari A. Yvon-Lewis of the National Oceanic and Atmospheric Administration, Miami, Fla., also contributed to the study. The research was supported by the National Science Foundation and the National Oceanic and Atmospheric Administration.

Iqbal Pittalwala | UCI
Further information:
http://today.uci.edu/news/release_detail.asp?key=1113

More articles from Earth Sciences:

nachricht Climate Change in West Africa
17.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Determining the Earth’s gravity field more accurately than ever before
13.06.2019 | Technische Universität Graz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>