Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric water clusters provide evidence of global warming

25.02.2004


Hamilton College professor/students publish findings in JACS



Researchers at Hamilton College have identified several methods for successfully determining the structures and thermodynamic values for the formation of atmospheric water clusters, which scientists have speculated may accelerate global warming. The Hamilton team’s findings were published in the March 3 issue of the Journal of the American Chemical Society.

The greenhouse effect is caused by molecules that absorb infrared radiation released from the Earth’s surface, trapping heat in the atmosphere. Water acts as a greenhouse gas because it is one of the molecules that can absorb infrared radiation and cause warming. "Our research supports the suggestion that in a global warming scenario higher temperatures will lead to increased absorption of solar radiation by water clusters," said lead author, George Shields, the Winslow Professor of Chemistry at Hamilton College. "The prediction that higher order water clusters (trimers, tetramers, and pentamers) are present in the atmosphere is significant because it shows that these entities must be considered as key players in atmospheric processes."


Previous research has hypothesized that water clusters (two or more water molecules held together by hydrogen bonds) could catalyze acid rain or the formation of aerosol in the atmosphere, and even lead to acceleration of the Greenhouse effect. All of these ideas depend on the presence of water clusters in the troposphere, the region of the atmosphere that is directly heated by the Earth’s surface. The Hamilton group can now predict the concentration of water clusters present in the troposphere. Large water clusters have for some time been thought to catalyze reactions which have implications for the chemistry that takes place in the atmosphere. A paper in the June 27, 2003 issue of Science documented the first detection of a water dimer (two hydrogen bonded water molecules) in the troposphere.

Shields said, "Once we knew the dimers were present, we investigated whether larger water clusters might also be involved in a variety of atmospheric chemistry processes. We started by using high level quantum chemistry methods to predict dimer concentrations that would be found on a warm, humid day. The accuracy of our dimer calculation, which matched the experimentalists’ detection of water dimer concentrations under the same conditions, led us to calculate the concentration of other water clusters in the troposphere." The researchers found that water clusters consisting of cyclic trimers, cyclic tetramers, and cyclic pentamers should all be detectable in the lower troposphere.

The Hamilton researchers used the documented information on water cluster structures to investigate the effectiveness of various model chemistries in modeling gas-phase water cluster formation. The performance of these chemistries was compared against previous calculations, and the Hamilton team found that thermodynamic calculations by Gaussian-2, Gaussian-3 and Complete Basis Set-APNO chemistries compared quite well to the prior calculations. (Experimentalists reported a value of 6 x 10^14 dimers per cubic centimeter at 292 K on a 100% humid day. The Hamilton study predicted a value of 4 x 10^14 dimers per cubic centimeter at 292 K.)


George Shields conducted the research with two undergraduate students, Meghan Dunn and Emma Pokon. The research was made possible through funding from the American Chemical Society/Petroleum Research Fund, Merck/AAAS, the Camille and Henry Dreyfus Foundation, and from NSF Grant CHE-0116435 for supercomputer instrumentation as part of the MERCURY supercomputer consortium (http://mars.hamilton.edu).

Sharon Rippey | EurekAlert!
Further information:
http://mars.hamilton.edu
http://www.hamilton.edu/

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>