Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Statistics research offers new forecast of El Niño

27.01.2004


A statistical model from Ohio State University is forecasting sea surface temperatures in the tropical Pacific Ocean in a new way.



The model gives scientists a way to quantify the uncertainty that surrounds the climatic phenomenon known as El Niño, which triggers severe weather changes in North and South America and Australia and endangers crops and wildlife, said Noel Cressie, professor of statistics and director of the university’s Program in Spatial Statistics and Environmental Sciences.

While there are many methods for forecasting El Niño, this model is unique because it includes detailed measures of uncertainty, explained Cressie. Such measures are important for quantifying risk when, for example, farmers and insurance companies make decisions about the next harvest.


“This is a Bayesian statistical model -- it represents a new paradigm in geophysical modeling, where all sources of uncertainties are accounted for in a melding of geophysical knowledge and statistical description,” Cressie said.

In this case, the strength of westerly winds in a particular location of the tropical Pacific is a key component. Although the research team discovered this relationship through their own exploratory spatial data analysis, this experimental finding fits with one dominant scientific paradigm that westerly wind bursts are an important factor in the pooling of warm surface waters in the eastern Pacific.

Peruvians named the warming El Niño, or “The Christ Child,” because it typically arrives in December during the years it occurs.

Drawing on decades of data for wind, air pressure, and sea surface temperature, the model can forecast El Niño six months in advance -- long enough for farmers and commercial fishermen to plan for the coming season.

The model provides a range of probable sea surface temperatures in each forecast. Over the last five years, only once did the actual temperature not fit within the model’s predicted range.

For the first time, a tool based on the model is available on the Web (http://www.stat.ohio-state.edu/~sses/collab_enso.php), so scientists and the public can view animations of El Niño forecasts from January 1985 through May 2004, and compare the forecasts to observed temperatures in the tropical Pacific.

Normally, temperatures of surface waters in the western Pacific are 6 to 8 degrees Celsius (10 to 15 degrees Fahrenheit) warmer than in the east. But during an El Niño, the temperature differential reverses.

The nutrient-poor warm water forces the fish that normally thrive off the west coast of South America to go elsewhere to find food. Birds that would feed on the fish die off, and the local fishing economy suffers.

El Niño causes far-reaching weather events as well, including drought and heatwaves across Australia, torrential rainfall in Central and South America, and heavy winter snows and floods in the southern United States -- all of which affect water resources and food supply.

Scientists don’t fully understand the factors that cause an El Niño, and models of such large environmental systems are very complicated.

But it’s in just such a situation -- where there is a considerable amount of uncertainty involved -- that a statistical model that accounts for physical understanding can do very well, Cressie explained.

The Web site where the model’s results are presented grew out of a paper that Cressie and his colleagues -- Mark Berliner, professor of statistics at Ohio State, and Christopher K. Wikle, associate professor of statistics at the University of Missouri -- had previously published in the Journal of Climate in 2000.

The U.S. Environmental Protection Agency funded this work.


Contact: Noel Cressie, (614) 292-5194; Cressie.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://researchnews.osu.edu/archive/ninostat.htm
http://www.stat.ohio-state.edu/~sses/collab_enso.php

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>