Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

If Airbags Work Well With "Opportunity," Too, Then Mars Landing Sites Can Be Chosen More Boldly, Says UB Geologist

16.01.2004


The anticipated Mars landing on Jan. 24 of the Opportunity rover will be a bit more challenging than the Spirit’s bounce onto the red planet earlier this month, according to a University at Buffalo geologist, but if it’s successful, then scientists will be able to be much bolder about selecting future Mars landing sites.


Apollinaris Patera, a volcano on the surface of Mars, could be a future landing site, says a UB planetary volcanologist, if the airbag technology proves as successful with "Opportunity" as it has been with "Spirit."



"If both of these landers survive with airbag technology, then it blows the doors wide open for future Mars landing sites with far more interesting terrain," said Tracy Gregg, Ph.D., University at Buffalo assistant professor of geology in the UB College of Arts and Sciences and a planetary volcanologist.

Gregg, who headed a national conference at UB in 1999 regarding the selection of future Mars landing sites, is chair of the geologic mapping standards committee of the NASA Planetary Cartography Working Group.


"With the success of Spirit, I feel so much more confident about future Mars landers," said Gregg. "The airbags seem to be able to withstand quite a bit of trauma."

Gregg remembers attending a conference presentation a few years ago by Matt P. Golombek, Ph.D., planetary geologist at the Jet Propulsion Laboratory and, at the time, the principal investigator on the Mars Pathfinder mission, in which he proposed the airbag landing technology.

"He listed the 15 steps that had to happen at exactly the right time and in exactly the right way in order for this technology to work. The general mood in the lecture hall was, ’Yeah, right, good luck,’" Gregg remembered. "Well, the next year, he got up to a standing-room-only crowd at a meeting of the same organization and he described all of the same steps that the Pathfinder had successfully completed on Mars. He got a standing ovation."

The selection of Mars landing sites is a complex balancing act, Gregg says, where the potential for important scientific discoveries has to be balanced against the requirement that sites be absolutely safe so that the rovers can perform well and send data back to earth.

Both Gusev Crater, where the Spirit landed, and Sinus Meridiani, where Opportunity is scheduled to land, were chosen, Gregg says, because they are not expected to have large boulders, steep cliffs or deep craters that could pop an airbag or swallow up the lander preventing the transmission of radio signals.

"If Opportunity survives the landing on Jan. 24, there is a high possibility that we will get to see layers of ancient rock, deposited when Mars was warm and wet and could have supported life," she says. "Evidence of river channels, which we expect to see at Sinus Meridiani, could be remnants of that early, warm history."

When pictures start coming back from Opportunity, Gregg will have her eyes peeled, searching for layers in the walls of the dried-up river channels.

"Those layers could be lava flows," explained Gregg, noting that often the best place to look for evidence of life on any planet is near volcanoes.

"That may sound counterintuitive, but think about Yellowstone National Park, which really is nothing but a huge volcano," she says. "Even when the weather in Wyoming is 20 below zero, all the geysers, which are fed by volcanic heat, are swarming with bacteria and all kinds of happy little things cruising around in the water.

"So, since we think that the necessary ingredients for life on earth were water and heat, we are looking for the same things on Mars, and while we definitely have evidence of water there, we still are looking for a source of heat."

Gregg hopes that a future landing Mars site will be near a volcano, particularly one called Apollinaris Patera.

"A landing site near a volcano might be possible, now that the airbag technology has worked so wonderfully," she says.

Ellen Goldbaum | University at Buffalo
Further information:
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=65440009

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>