Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isotopes from feathers reveal bird migration

06.11.2003


Using naturally occurring patterns of stable-isotopes created by weather and plants, Jason Duxbury of the University of Alberta and his colleagues are tracking the migration routes of birds of prey. Their work on the summer origins of migrating and wintering Peregrine Falcons and Burrowing Owls has shed new light on what has previously been the secret, non-breeding half of the birds’ lives.



By analyzing stable isotopes of hydrogen, carbon, and nitrogen in bird feathers, Duxbury has been able to trace Burrowing Owls wintering grounds in southern Texas and central Mexico, as well as migrating Peregrine Falcons caught on the gulf coast of Texas, back to their breeding grounds in Canada.

The principle behind the work is simple: birds are what they eat. And what birds eat while growing feathers on the breeding grounds contains isotopes of hydrogen, carbon, and nitrogen. These vary in predictable patterns across North America.


Duxbury will be presenting a paper on his work on Wednesday, November 5, at the annual meeting of the Geological Society of America in Seattle, WA. Scientists there are exploring the evolving interface between isotope geochemistry and ecology.

Hydrogen and its heavier version, the isotope deuterium, are both naturally found in molecules of rain water. But as the cycle of evaporation and precipitation repeats across North America and over mountainous regions, the heavier deuterium isotopes get left behind. That creates well-mapped hydrogen/deuterium trends across the continent, Duxbury explains.

"There is a well known gradient of depleting deuterium/hydrogen ratios from the Gulf of Mexico and the Atlantic Ocean across the eastern part of North America," said Duxbury. As you get near mountains there is also a noticeable elevation effect that reflects how changes in elevation also cause precipitation cycles.

The hydrogen isotope signature of animals is essentially the isotope signature found in the water and food they eat. Furthermore, the isotope signature found at the bottom of the food chains can be passed up to the top of food chains. The result is that isotopic signatures in the feathers of the top predators reflect the area where the food was consumed while the feathers were grown.

Carbon isotopes, also found in feathers, vary with latitude due to different growing conditions for plants across the continent. Even nitrogen isotopes can help track birds, though nitrogen isotopes variations are not found in predictable patterns. The application of nitrogen-rich fertilizers in agricultural areas can also alter nitrogen isotope ratios, Duxbury explains.

To collect the feathers for analysis, Duxbury and his colleagues rely on other researchers across North America. "Since 1995 I’ve had other researchers who were banding birds gather feathers all across North America," Duxbury said.

In order to get a local isotope baseline for a bird population the researchers first gather feathers from nestlings at their nest sites. Then they gather feathers from birds on migration or on their wintering grounds to trace them back to the isotope baseline based on the nestlings.

In the case of Burrowing Owls, the stable isotope technique has traced unbanded owls wintering in central Mexico back to Canadian breeding populations, said Duxbury. Subsequent analyses have also revealed that Burrowing Owls disperse more widely between breeding seasons than previously thought. That discovery, in turn, can be applied to population models used in the conservation of Burrowing Owls.

This relatively new technique will not replace banding, says Duxbury, since it cannot trace a bird to an exact location. However, the recovery of a banded bird is very rare event, and so it takes decades to accumulate data. Stable-isotope analysis is providing similar dispersal and migration data, but at a far greater rate. In essence, every bird that is captured for a feather sample is equivalent to a band recovery, Duxbury says.

"Essentially, it’s not as good as getting a band return, which gives you A to B," says Duxbury. "You can’t say exactly where a bird’s origin was, but you can narrow it down to a region. For instance, with an isotope signature we can get it back to southern Alberta, whereas a band can get it to an exact nest location."

Satellite telemetry is by far the most accurate method of tracking birds. However, it comes with a hefty price. In addition, technology has not developed satellite transmitters small enough for Burrowing Owls, says Duxbury.

Ann Cairns | EurekAlert!
Further information:
http://gsa.confex.com/gsa/2003AM/finalprogram/abstract_66548.htm
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>