Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UCSB earthquake study improves model, shows hazard to structures located near the fault

12.03.2003


Thanks to recent advances in parallel computing, an interdisciplinary team of scientists at the University of California, Santa Barbara has discovered a peculiar and important aspect of how seismic waves are generated during an earthquake. The results are published in the March 7 edition of Science Magazine.



The team, whose work is supported by the Keck Foundation, was composed of physics graduate student Eric M. Dunham, professor of physics Jean M. Carlson, and postdoctoral researcher Pascal Favreau, who was based at UCSB’s Institute for Crustal Studies. They modeled earthquakes using computer simulations of rapidly expanding three-dimensional ruptures along faults. They found that sections of the fault with increased material strength (called barriers) focus the earthquake’s energy to an unexpected degree. This result comes as a surprise, since hard-to-break barriers were previously considered obstacles to the growing rupture.

The energy concentration has several important implications. When barriers break, they release intense bursts of seismic waves that pose significant hazards to structures located near the fault. This explains puzzling records of the 1984 Morgan Hill earthquake that struck the area south of San Jose, California. During this quake there was an intense pulse of ground shaking traced to a high strength region of the fault, rather than the rupture front which is typically the source of the strongest seismic waves. Furthermore, the researchers are the first to show how this energy concentration drives the rupture ahead of where it would have been had the fault been easier to break.


They showed that the rupture can even propagate faster than shear wave speed, typically considered the speed limit of growing earthquakes. This "supershear" propagation, once regarded as a mathematical curiosity, has become an area of growing interest after experimental observations gave support to controversial reports of supershear bursts occurring during several major earthquakes.


First author Eric Dunham was awarded Outstanding Student Paper from the American Geophysical Union for this article. Jean Carlson and Pascal Favreau are listed as co-authors.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Earth Sciences:

nachricht New Measurement Device: Carbon Dioxide As Geothermometer
21.05.2019 | Universität Heidelberg

nachricht Cause for variability in Arctic sea ice clarified
14.05.2019 | Max-Planck-Institut für Meteorologie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>