Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite helps scientists see effects of earthquakes in remote areas

06.02.2003


The unique capabilities of a NASA earth-observing satellite have allowed researchers to view the effects of a major earthquake that occurred in 2001 in Northern India near the border of Pakistan.



Lead author Bernard Pinty of the Institute for Environment and Sustainability in the Joint Research Centre of the European Commission, Ispra, Italy, and colleagues from the U.S., France and Germany, used the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA’s Terra satellite to observe the effects of a massive earthquake in the Gujarat province of India.

Considered one of the two most damaging seismic events in Indian recorded history, the Gujarat earthquake struck with a magnitude of 7.7 (Richter scale) on January 26, 2001. About 20,000 people died and another 16 million people were affected. Local residents reported fountains of water and sediments spouting from the Earth following the earthquake.


As a result of the earthquake’s intense ground shaking, loosely-packed, water-saturated sediments in the area liquefied, behaving more like a liquid than a solid. Ground water flowed up to the surface carrying sediments, flooding large areas including ancient riverbeds.

"Although the instrument’s multiangle and multispectral capabilities weren’t specifically developed for the purpose of detecting surface water, this is an exciting application that merits further investigation," said co-author David J. Diner, MISR Principal Investigator at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. "Of significance to the Gujarat event is MISR’s acquisition of compelling evidence of surface water far from the earthquake’s epicenter, particularly over remote locations inaccessible to teams on the ground."

Aside from collecting scientific data in hard to reach places, MISR also provides a map overview of what happened and the area affected. Such information could be used to detect places where survey teams could concentrate their efforts. In this case, MISR data demonstrated that specific areas of the Rann were more affected than others by dewatering. In addition, the data were instrumental in identifying distant sites of liquefaction. Such information may help to validate earthquake models and to further constrain relationships between earthquake magnitudes and distances of impacts.

"Satellites provide the best way to have a global view of an entire region, hundreds of square kilometers can be observed in a few minutes, and this happens at any time they fly over a place," said Pinty. "In the case of Gujarat, scientists were able to conduct surveys near the epicenter but could hardly access other regions also affected by the earthquake, partly because of the proximity of Pakistani border, a high security and politically sensitive region."

The earthquake’s epicenter was located about 80 kilometers (50 miles) east of the city of Bhuj, but the MISR instrument found dewatering, or release of water and sediment due to compression and liquefaction, as far as 200 km (124 miles) from the epicenter. Additionally, there was significant dewatering all along an 80-100 kms (50-62 miles) wide (south to north) ancient salt lake bed to the north of Bhuj, known as the Rann of Kutch.

In the days to weeks following the earthquake, along with ground cracks and other types of deformation, water flowed to the surface and progressively evaporated in various places. A year later, scientists could still observe the consequences of the earthquake across the Rann because the water that came up to the surface was very salty. After evaporation, the salt was left on the ground and MISR was able to detect it also.

The MISR instrument views the sunlit face of the Earth simultaneously at nine widely spaced angles, and provides ongoing global coverage with high spatial detail. Its imagery is carefully calibrated to provide accurate measurements of the brightness, contrast, and color of reflected sunlight.

One way MISR registers surface features is by picking up different wavelengths of light as they are reflected off the Earth’s surface. As the satellite passes overhead, MISR collects information over a 400 km (248 mile) swath at a spatial resolution of 275 meters (300 yards), instantaneously assessing surface features over large regions. Since the bright soils of the Rann of Kutch reflect most of the Sun’s incoming near-infrared radiation, and water bodies absorb near-infrared radiation, MISR can detect the contrast and thereby tell where dewatering from the earthquake occurred. Changes in reflection at different view angles also proved advantageous to identify the presence of surface water in other regions.


###
A paper on the study appears in the current issue of the American Geophysical Union’s journal, EOS.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0115gujarat.html
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht The lower mantle can be oxidized in the presence of water
25.05.2020 | Science China Press

nachricht New technique separates industrial noise from natural seismic signals
20.05.2020 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New technology can detect anti-virus antibody in 20 minutes

25.05.2020 | Medical Engineering

ATLAS telescope discovers first-of-its-kind asteroid

25.05.2020 | Physics and Astronomy

Researchers develop high-performance cancer vaccine using novel microcapsules

25.05.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>