Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will Climate Change Temper El Niño’s Tantrums?

10.12.2002


The broad-scale warming expected from increased greenhouse gases may actually sap the strength of a typical El Niño, according to researchers at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. In contrast, the average El Niño during the last ice age may have packed more punch than today’s. The scientists have examined the past and future behavior of El Niño using a sophisticated computer model of global climate. They present their results this week at the annual meeting of the American Geophysical Union in San Francisco, December 6–10.


El Niño typically brings flooding to some parts of the world and drought to others. New research suggests El Niños have weakened since prehistoric times and could change still further in the future



More tepid El Niños to come?

NCAR scientist Esther Brady is lead author of a study that uses the NCAR Climate System Model to track how global air and ocean circulation could evolve at increasing levels of carbon dioxide, the most prevalent of the industrial greenhouse gases. The scientists simulated Earth’s climate with atmospheric carbon dioxide at one, two, and six times its preindustrial level of about 280 parts per million.


As greenhouse gases increase and global air temperatures rise, Brady’s results show a significant weakening of the average El Niño event. El Niño typically shifts warm water from the western Pacific toward the central and eastern tropics, as east-to-west trade winds weaken. Her simulations show an increase in cold upwelling off the coasts of Ecuador and Peru. This helps keep the eastern tropical Pacific from warming up as much as the west, sharpening the oceanic contrast that feeds the trade winds and helps keep El Niño at bay. Brady also found that greenhouse warming in the model led to a decoupling of the link between Pacific trade winds and the underlying sea-surface temperatures. This ocean-atmosphere link is believed to help drive the cycle of El Niño and its cool-water counterpart, La Niña.

Although this cycle might weaken on average in a greenhouse-warmed world, any given El Niño could still be intense, Brady notes. Even in the most extreme simulation, with six times the present-day level of carbon dioxide, large El Niños occur—but fewer overall.

Simulating El Niño’s past

It turns out there’s a history of diminished El Niño events in a warming world, according to another Climate System Model study. Led by NCAR’s Bette Otto-Bliesner, this project examined the period around 11,000 years ago, when global temperatures were rebounding from the last ice age. The average El Niño during this period in the computer simulation was about 20% weaker than today. The main factor responsible for the decrease is a slow shift in Earth’s asymmetric orbit around the Sun. Nowadays, Earth’s orbit comes closest to the Sun in early January, but 11,000 years ago, the closest approach came in the Northern Hemisphere summer, the season when most El Niños are just beginning to intensify. Along with other factors, the near-Sun approach may have provided enough extra heating to warm the western Pacific, while the eastern Pacific—where upwelling of cold water dominates—remained chilly. Driven by this intensified contrast, the east-to-west trade winds would strengthen, hindering developing El Niños.

Looking even further back in time, Otto-Bliesner and colleagues found that a more vigorous El Niño may have held sway when the last ice age was at its peak. Simulations for 21,000 years ago show the typical El Niño about 20% stronger than today. In the model, cold water sinks as it drifts from ice-covered southern oceans into the tropical Pacific. The thermocline—an oceanic boundary that separates surface warmth and subsurface chill—is thus strengthened, and the effect, says Otto-Bliesner, is to ramp up the average intensity of both El Niños and La Niñas.

Previous studies have differed on how intense El Niño events might have been in the past. She adds that both weak and strong El Niños show up in each era studied thus far, and more work is needed to arrive at a solid history. "The observational record is pretty short. El Niño may be changing already, but I don’t think we really know that yet."

Background: How El Niño works

A tight coupling between ocean and atmosphere produces the weather and climate impacts of El Niño and its counterpart, La Niña. During El Niño, the trade winds that usually blow from east to west across the tropical Pacific weaken, and the strong upwelling that normally keeps waters cool off Peru and Ecuador diminishes. This allows warmer water to extend across the tropical Pacific, rather than being confined to the west near Indonesia. Tropical showers and thunderstorms follow the warm waters eastward, toward South America. The air rising within these displaced storms helps steer upper-level winds and shape climate across much of the globe. In contrast, during La Niña, the trade winds strengthen, upwelling increases, and the eastern tropical Pacific is cooler than normal. This helps trigger a different set of climate impacts, some of them the opposite of those expected during El Niño. The entire system of ocean-atmosphere linkages is known as the El Niño–Southern Oscillation (ENSO).

Writer: Bob Henson

Bob Henson | EurekAlert!

More articles from Earth Sciences:

nachricht Hundreds of bubble streams link biology, seismology off Washington's coast
22.03.2019 | University of Washington

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>