Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better weather predictions in an avalanche of data

24.10.2002


Sometimes getting too much of a good thing may create more problems than not getting enough - especially when it comes to the weather. Just ask Texas A&M University atmospheric scientist Fuqing Zhang, whose ensemble weather forecasting research is burdened with trillions of bytes of real-time data.



Zhang’s quest, funded by a National Science Foundation grant of $295,500, is to find the best way to assimilate the most recent weather observation data for input into the latest computer forecasting models.

"Right now, we have good computer programs to help us forecast tomorrow’s weather," Zhang said. "For example, the official U.S. weather forecast, issued by the National Center for Environmental Protection (NCEP), part of the National Oceanographic and Atmospheric Agency (NOAA), is completely computer generated, untouched, as it were, by human hands.


"The problem is that we have overwhelming amounts of data to put into such models," he continued. "We receive numbers on wind, water, temperature from surface weather stations, weather balloons, national Doppler radar coverage and satellites at rates that vary from minutes to hours to days. All this data is hard to integrate for computer input because it varies according to the different spatial, geographic and temporal scales over which it was collected. In addition, many of the measurements are indirect indicators of physical conditions.

"So, we need to come up with better ways to digest all this data in order to have immediate impacts on our daily weather predictions."

Zhang and his team of collaborators from NOAA, the National Center for Atmospheric Research (NCAR) and the University of Washington (Seattle) are hoping to help forecasting computers’ data digestion processes through use of innovative statistical techniques permitting ensemble-based data assimilation.

"Ensemble-based data assimilation focuses on better ways to incorporate the uncertainties surrounding both yesterday’s forecast and today’s observations," Zhang said. "We sample the ways in which the previous day’s forecast deviated from what really happened, and we sample the wealth of data available to us from the present 12 hour period. Then we use statistics to get the best estimate of current initial conditions for the computer forecasting models, which predict tomorrow’s weather.

"Even given the problems of data sampling and uncertainty, new generation numerical weather prediction via computer simulations significantly outperforms human forecasters," he continued. "Now, innovative data assimilation techniques will not only take full advantage of current weather observations to make better daily weather forecasts, it will also provide guidance in designing next-generation weather observation networks."

Judith White | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Earth Sciences:

nachricht Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>