Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of California, Riverside study dates our ancestors

27.09.2002


Photo Caption: A type of branching burrow system that first appear at the base of the Cambrian (circa 545 million years before the present). The trace consists of a series of curved open tunnels that extended into the muddy sea floor. The tunnels were later filled with sand and the mud weathered away resulting in a cast of burrow system. The producer of this trace fossil is not known but these trace fossil nevertheless are important in that they mark the beginning of the sea floor being churned by sediment processing animals. Compared to the much simpler trace fossils in older rocks they also bear witness to the appearance of more complex animal behavior. The figured specimen is from the Lower Cambrian of Sweden. The length of each curved element is about 7 mm.


Photo Caption: A trace fossil made on the top of the sediment surface. The trace is about 1-2 mm in width. This is a common form found in Late Proterozoic sedimentary rocks. The figured specimen is from Flinders Range, South Australia.


Study suggests macroscopic bilaterian animals did not appear until 555 million years ago

The traces left behind by ancient animals may hold the key to determining when macroscopic bilaterians -- animals that are symmetric about a central axis, with a body divided into equivalent right and left halves, and with an anterior-posterior polarity (e.g., this includes worms, ants, and ranging up to humans) -- first appeared. A team led by Dr. Mary Droser, professor of geology at the University of California, Riverside, studied "trace" fossils, e.g., burrows, trails and tracks left behind by the earliest bilaterian animals. Results from their study suggest that bilaterian animals did not appear until approximately 555 million years ago.

The authors publish their findings in a paper entitled "Trace fossils and substrates of the terminal Proterozoic-Cambrian transition: Implications for the record of early bilaterians and sediment mixing" in the Proceedings of the National Academy of Sciences (PNAS). They report that these trace fossils, found in many different locations around the world, were preserved very well in sediment beds from the Early Cambrian (544 to 510 million years ago), both in terms of quality of detail and in preserving traces made close to this sediment-water interface. Trace fossils can shed light on an organism’s behavioral activity.



"The timing of the appearance of bilaterian animals, while clearly by 555 million years ago, is the subject of some debate," said Droser. "One of the most important pieces of evidence for early animals is the record of trace fossils. That is, animal burrows, tracks and trails preserved in the rock record. Based on evidence from functional morphology, many of the features that define bilaterians could only have originated in a relatively large animal that inhabited the seafloor and thus produced trace fossils. Early bilaterians, in particular, were soft-bodied and thus difficult to preserve."

The trace fossils examined in the study are from the transition between the Proterozoic Era (2.5 billion to 544 million years ago), where few animal body fossils are found, and the Cambrian (544 to 490 million years ago), where diverse animal body fossils such as trilobites are found. Proterozoic trace fossils, typically only a few millimeters wide, are found at the interface between water and sediment. The Cambrian trace fossils are more diverse in size, shape and depth of penetration into the sediment.

The researchers examined and did field work on thousands of meters of rock. "We collected samples from Australia, Newfoundland, the western United States, Scandinavia and Namibia," said Soren Jensen, co-author of the PNAS paper and a postdoctoral researcher in the department of earth sciences at UC Riverside. "These samples of ancient marine rocks were then carefully inspected, x-rayed, and thin-sectioned for microscopic examination to provide us with an even closer look."

The authors attribute the exceptional preservation of Early Cambrian trace fossils to the low levels of sediment mixing, which resulted in relatively firm substrates less prone to resuspension. Close inspection of these fossils could help determine exactly when bilaterian animals emerged, a topic of much controversy.

"There have been reports of trace fossils as old as 1 billion years old," said Droser. "But these records are scarce and, on critical examination, are not convincing. On examining the trace fossil record from 565 million years ago through until 535 million years ago, we found that the substrate conditions -- for example, the bottom of the ocean -- were such that if animals were burrowing or walking or crawling along the seafloor, their traces would have likely been preserved. We see a gradual increase in diversity and complexity of trace fossils from about 555 million years ago, known as the Cambrian Explosion and which likely reflects the appearance of bilaterians. We found no evidence for a long history of large animals before this time."

News Media Contact:
Name: Iqbal Pittalwala
Phone: 909.787.2645
Email: iqbal@citrus.ucr.edu

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.earthscience.ucr.edu/
http://www.pnas.org/
http://www.ucr.edu/

More articles from Earth Sciences:

nachricht Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>