Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic forecast: premature break-up of ozone hole this week

24.09.2002


Based on satellite data from the European Space Agency, the national meteorological centre of the Netherlands predicts the Antarctic ozone hole will break apart this week, months earlier than usual.



A scientist at the Royal Netherlands Meteorological Institute (KNMI) adds that the depth of the ozone hole is much smaller than previously seen.

"This breakdown is occurring exceptionally early in the year, about two months earlier than normal", says Henk Eskes, a KNMI senior scientist. "The depth of the ozone hole this year also is unusually small, about half that recorded in 2001".


The KNMI researcher predicted the Antarctic ozone hole will separate into two parts by Wednesday, 25 September, and will weaken even further afterwards. Despite the optimistic forecast, he warned the possibility that one of the two remnants will strengthen and form a new ozone hole “cannot be excluded.”

Globally, there has been a slow decrease in the amount of ozone-depleting substances in the atmosphere, Eskes said, due to international treaties to reduce their production. But, he added, “this decrease is too slow to explain this year’s weak ozone hole.”

The explanation lies instead with the natural year-to-year variability of atmospheric circulation that influences the size and duration of the ozone hole, according to the Dutch scientist. The ozone hole is surrounded by a vortex of strong winds that block the exchange of air between polar and mid-latitude regions. During the South Pole’s spring and summer, the temperature increases and the winds weaken. As a result, ozone-poor air inside the vortex mixes with the ozone-richer air outside, and the ozone hole dissipates.

“Normally this happens in November-December, but this year we predict it will happen this week,” Eskes said.

Since the early 1980s, the Antarctic ozone hole has developed every year starting in August or September. More than half of the area’s natural ozone is depleted eventually, caused by such ozone-depleting substances as chlorofluorocarbons, or CFCs, which had been used as refrigerants, solvents and foam-blowing agents.

The strong ozone depletion occurs only at very low temperatures under the influence of solar radiation. As a result, the ozone hole only appears over the cold region of Antarctica, when the sun returns after the polar winter.

Depletion of the ozone layer also occurs outside the ozone hole at mid-latitudes. In these areas, however, the depletion occurs by slower processes and is less strong than over Antarctica.

KNMI, the Dutch national research and information centre for climate, climatic change and seismology, uses data from ESA’s Global Ozone Monitoring Experiment (GOME) instrument onboard the ERS-2 satellite to generate daily global ozone analyses and nine-day ozone forecasts.

The centre’s GOME Fast Delivery Service performs near real time processing of the satellite data. GOME ozone observations are assimilated into a tracer transport model, driven by meteorological fields from the numerical weather prediction model generated by the European Centre for Medium-Range Weather Forecasts, a UK-based international organisation for advance weather forecasts.

The GOME Fast Delivery Service was developed under ESA’s Data User Programme, an effort dedicated to developing and demonstrating applications services in support of institutional and private user communities.

The GOME instrument is a nadir-scanning ultraviolet and visible spectrometer to monitor atmospheric ozone levels. Since 1996, ESA has been delivering to KNMI and other users three-day GOME global observations of total ozone, nitrogen dioxide and related cloud data via CD-ROM and the Internet.

Launched earlier this year, ESA’s Envisat satellite carries several instruments to assist climate researchers in monitoring ozone levels and other atmospheric conditions. Enivsat’s suite of ten sensors include: the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) instrument to measure trace gases and aerosol concentrations in the atmosphere; the global ozone monitoring by occultation of stars (GOMOS) sensor to observe the concentration of ozone in the stratosphere; and the Michelson interferometer for passive atmospheric sounding (MIPAS) to collect information about chemical and physical processes in the stratosphere, such as those that will affect future ozone concentrations.

ESA, together with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), also is preparing a series of three satellites called MetOp that will carry follow-on GOME instruments and guarantee at least ten years of continued ozone monitoring from space starting in 2005.

Claus Zehner | alfa
Further information:
http://www.esa.int

More articles from Earth Sciences:

nachricht Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>