Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Discover Signs of Volcanoes Blowing their Tops in the Deep Ocean

27.06.2008
Evidence of Violent Eruptions on Gakkel Ridge in the Arctic Defies Assumptions about Seafloor Pressure and Volcanism

A research team led by the Woods Hole Oceanographic Institution (WHOI) has uncovered evidence of explosive volcanic eruptions deep beneath the ice-covered surface of the Arctic Ocean. Such violent eruptions of splintered, fragmented rock—known as pyroclastic deposits—were not thought possible at great ocean depths because of the intense weight and pressure of water and because of the composition of seafloor magma and rock.

Researchers found jagged, glassy rock fragments spread out over a 10 square kilometer (4 square mile) area around a series of small volcanic craters about 4,000 meters (2.5 miles) below the sea surface. The volcanoes lie along the Gakkel Ridge, a remote and mostly unexplored section of the mid-ocean ridge system that runs through the Arctic Ocean.

“These are the first pyroclastic deposits we've ever found in such deep water, at oppressive pressures that inhibit the formation of steam, and many people thought this was not possible,” said WHOI geophysicist Rob Reves-Sohn, lead author and chief scientist for the Arctic Gakkel Vents Expedition (AGAVE) of July 2007. “This means that a tremendous blast of CO2 was released into the water column during the explosive eruption.”

The paper, which was co-authored by 22 investigators from nine institutions in four countries, was published in the June 26 issue of the journal Nature.

Seafloor volcanoes usually emit lobes and sheets of lava during an eruption, rather than explosive plumes of gas, steam, and rock that are ejected from land-based volcanoes. Because of the hydrostatic pressure of seawater, ocean eruptions are more likely to resemble those of Kilauea than Mount Saint Helens or Mount Pinatubo.

Making just the third expedition ever launched to the Gakkel Ridge—and the first to visually examine the seafloor--researchers used a combination of survey instruments, cameras, and a seafloor sampling platform to collect samples of rock and sediment, as well as dozens of hours of high-definition video. They saw rough shards and bits of basalt blanketing the seafloor and spread out in all directions from the volcanic craters they discovered and named Loke, Oden, and Thor.

They also found deposits on top of relatively new lavas and high-standing features—such as Duque’s Hill and Jessica’s Hill--indications that the rock debris had fallen or precipitated out of the water, rather than being moved as part of a lava flow that erupted from the volcanoes.

Closer analysis has shown that the some of the tiny fragments are angular bits of quenched glass known to volcanologists as limu o Pele, or “Pele's seaweed.” These fragments are formed when lava is stretched thin around expanding gas bubbles during an explosion. Reves-Sohn and colleagues also found larger blocks of rock—known as talus—that could have been ejected by explosive blasts from the seafloor.

Much of Earth’s surface is made up of oceanic crust formed by volcanism along seafloor mid-ocean ridges. These volcanic processes are tied to the rising of magma from Earth’s mantle and the spreading of Earth’s tectonic plates. Submerged under several kilometers of cold water, the volcanism of mid-ocean ridges tends to be relatively subdued compared to land-based eruptions.

To date, there have been scattered signs of pyroclastic volcanism in the sea, mostly in shallower water depths. Samples of sediment and rock collected on other expeditions have hinted at the possibilities at depths down to 3,000 meters, but the likelihood of explosive eruptions at greater depths seemed slim.

One reason is the tremendous pressure exerted by the weight of seawater, known as hydrostatic pressure. More importantly, it is very difficult to build up the amount of steam and carbon dioxide gas in the magma that would be required to explode a mass of rock up into the water column. (Far less energy is needed to do so in air.) In fact, the buildup of CO2 in magma in the sea crust would have to be ten times higher than anyone has ever observed in seafloor samples.

The findings from the Gakkel Ridge expedition appear to show that deep-sea pyroclastic eruptions can and do happen. “The circulation and plumbing of the Gakkel Ridge might be different,” said Reves-Sohn. “There must be a lot more volatiles in the system than we thought.” The research team hypothesizes that excess gas may be building up like foam or froth near the ceiling of the magma chambers beneath the crust, waiting to pop like champagne beneath a cork.

“Are pyroclastic eruptions more common than we thought, or is there something special about the conditions along the Gakkel Ridge?” said Reves-Sohn. “That is our next question.”

Support for the Arctic Gakkel Vents Expedition and for vehicle development was provided by the National Science Foundation’s Office of Polar Programs; the NSF Division of Ocean Sciences; the Gordon Center for Subsurface Sensing and Imaging Systems, an NSF Engineering Research Center; the NASA Astrobiology Program; and the WHOI Deep Ocean Exploration Institute.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment.

Related Links

Explorers Use New Robotic Vehicles to Hunt for Life and Hydrothermal Vents on Arctic Seafloor

http://www.whoi.edu/sbl/liteSite.do?litesiteid=18873

Polar Discovery — Expedition 2
http://polardiscovery.whoi.edu/expedition2/index.html
Dive and Discover — Expedition 11
http://www.divediscover.whoi.edu/expedition11/index.html
Who is Rob Reves-Sohn?
http://polardiscovery.whoi.edu/expedition2/crew-revessohn.html
Earth’s Complex Complexion: Expeditions to remote oceans expose new variations in ocean crust

http://www.whoi.edu/oceanus/viewArticle.do?id=2496

Scientists Report New Type of Mid-Ocean Ridge in Remote Parts of the Earth
http://www.whoi.edu/page.do?pid=9779&tid=282&cid=901&ct=162
International Expedition to the Top of the World May Hold Clues to Formation of Earth's Crust: First Cruise of New U.S. Coast Guard Icebreaker Healy

http://www.whoi.edu/page.do?pid=9779&tid=282&cid=953&ct=162

| newswise
Further information:
http://www.whoi.edu/media

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>