Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data show Antarctic ice stream radiating seismically

06.06.2008
Stick, slip, like an earthquake

A seismologist at Washington University in St. Louis and colleagues at Pennsylvania State University and Newcastle University in the United Kingdom have found seismic signals from a giant river of ice in Antarctica that makes California's earthquake problem seem trivial.

Douglas A. Wiens, Ph.D., Washington University professor of earth and planetary sciences in Arts & Sciences, and colleagues combined seismological and global positioning system (GPS) analyses to reveal two bursts of seismic waves from an ice stream in Antarctica every day, each one equivalent to a magnitude seven earthquake. The GPS analyses were performed by Pennsylvania State and Newcastle University researchers.

The ice stream is essentially a giant glacier 60 miles wide and one-half mile thick. The data show that the river of ice moves about 18 inches within ten minutes, remains still for 12 hours, then moves another eighteen inches. Each time it moves, it gives off seismic waves that are recorded at seismographs all around Antarctica, and even as far away as Australia.

Seismic waves from what are loosely called "glacial earthquakes," mainly near Greenland, were originally reported in 2003, and the numbers have been increasing in recent years. Some scientists think the waves come from the phenomenon of calving, where a big chunk of ice breaks off of a glacier and floats away in the ocean, a very violent activity that could generate strong seismic signals. The new results show that at least some of the glacial earthquakes are produced by sudden sliding of large ice sheets.

The Antarctic signals were first detected by seismographs deployed by Wiens and his colleagues in 2001-2003 at a location about 500 miles away from the ice stream.

"At first we didn't know where the waves were coming from, but eventually we were able to narrow down the source to the ice stream." Wiens said.

Slower than a real earthquake

Prior to this discovery, researchers were not aware that ice streams radiated seismic waves.

"By some measures, the seismic impact is equivalent to a very large earthquake, but it doesn't feel like it because the movement is much slower than a real earthquake," Wiens said. "The data look an awful lot like an earthquake, but the slip lasts for 10 minutes, while on the other hand an earthquake of this size would last for just ten seconds. I guess you could call it an earthquake at glacial speed. This is very strange behavior, and we need to understand more about it."

GPS instruments placed directly on the ice stream can detect where slipping motion begins and where it stops. Scientists describe the motion as "stick-slip", which is the classic motion of earthquakes, occurring when the area around a fault moves slowly but the fault is stuck, remaining stationary until the stress builds up and the fault finally slips.

"The GPS shows us directly how the ice stream moves," Wiens said. "The slip starts in a certain part of the ice stream and then it moves out, rather like a landslide might start at a certain point and then move out to envelope an entire mountainside. The GPS tells us which part moved first and what other parts moved next and so forth."

The data show that the slip always starts from the same spot on the bed of the ice stream, what glaciologists call a "sticky" spot, which has more friction than the surrounding part of the bed.

A slip, not a creep

"Glaciologists had thought that they understood how glaciers move, and they thought they move slowly and continuously by creep, but now this indicates that they move with a fast slip, almost like an earthquake," Wiens said.

The study was published in the June 5 issue of Nature on-line and was funded by the National Science Foundation.

Wiens said that it is important to understand the physics behind what is controlling this kind of slip.

"This stick-slip phenomenon may provide a clue about what makes these ice streams move faster or slower," Wiens said. "This particular ice stream has been slowing down over the last few decades, and no one knows why. "

Wiens plans to study seismic records of stick-slip events going back several decades to see if there are changes, and also to search for similar signals from other ice streams.

"We need to understand what controls the speed of the ice streams, because that will affect how fast the ice in Antarctica will go away and sea level will rise as global warming melts the West Antarctic Ice Sheet."

Douglas A. Wiens | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

nachricht More than 90% of glacier volume in the Alps could be lost by 2100
09.04.2019 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>