Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist’s Discovery May Unlock Secrets to Start of Life on Earth

03.07.2002


Scientist continues to build case for origin of plate tectonics



A Saint Louis University geologist has unearthed further evidence in his mounting case that shifting of the continents -- and perhaps life on Earth -- began much earlier than many scientists believe.

Tim Kusky, a professor of Earth and atmospheric sciences, has discovered the world’s first large intact pieces of oceanic mantle from the planet’s earliest period, the Archean. The nearly mile-long section of rock, which is billions of years old, may hold clues as to when life developed on the planet. The major finding was reported today in the July issue of GSA-Today -- the premier journal of the Geological Society of America.


Working with colleagues from Peking University, Kusky uncovered the rare find at a site near the Great Wall where last year the team discovered the planet’s oldest complete section of oceanic crust. Reported in Science, their work recently was heralded by the Chinese government as one of the most significant scientific findings of 2001.

This latest discovery may prove even more remarkable. For years, scientists have longed to find large pieces of the planet’s deep interiors. But until now, they’ve had to rely on only tiny fragments to study. Formed tens of kilometers below the ancient sea floor, this new discovery’s massive mantle rocks are preserved in a highly faulted belt 100 kilometers long. Unlike the sea floor samples Kusky found last year, the mantle rocks preserve 2.5 billion-year-old minerals that hold clues to the origin of plate tectonics. The minerals, including an unusual type of chromite deposit only known from deep ocean floor rocks appear to have been deformed at extremely high temperatures before they were completely crystallized by volcanic

This shows that the mantle rocks were flowing away from the ridges on the oceanic floor, evidence that the continents began shifting more than 500 million years earlier than now widely believed. Because the discovery shows that the plates were moving in that early period, these findings could have a more far-reaching effect on theories related to the development of life on the planet. Just when single-celled organisms evolved into more complex organisms has been contested for years. Because hot volcanic vents on the sea floor may have provided the nutrients and temperatures needed for life to flourish, Kusky said it’s possible that life developed and diversified around these vents as the plates started stirring.

Kusky and Peking University’s J.H. Li have initiated a series of studies on the section of ancient mantle and it’s minerals aimed at understanding the conditions of the Earth 2.5 billion years ago. Their work is being funded by U.S. National Science Foundation, the Chinese National Natural Science Foundation, Saint Louis University and Peking University. The Chinese government also has dedicated a natural geologic park at the site of the discovery.

Saint Louis University is a leading Catholic, Jesuit, research institution ranked among the top 50 national, doctoral universities as a best value by U.S. News & World Report. Founded in 1818, the University strives to foster the intellectual and spiritual growth of its more than 11,000 students through a broad array of undergraduate, graduate and professional degree programs on campuses in St. Louis and Madrid, Spain.

Clayton Berry | EurekAlert!
Further information:
http://www.geosociety.org/
http://www.eas.slu.edu/People/TMKusky/

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>