Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Friction Inside The Earth Is A Source Of Heat

01.07.2002


There is high temperature inside our planet and the reason is not known yet. A common belief that the Earth`s interior is heated by radioactive elements is now doubted of. Professor Felix Letnikov from Irkutsk Institute of the Earth`s Crust have proposed an idea that the heat is formed in the outer core because of friction between its layers.

Different geophysical data confirm that there is a heat source inside the Earth. In the mantle there are zones with low viscosity, which correspond to molten substance. However, melting rocks requires a lot of energy - so, the question about a source of the energy arises. According to current information, the core consists of two parts: a liquid outer part and a solid inner part. The outer core begins at the depth of 2900 km and is 2346 km thick; it holds 31% of the Earth`s mass. It is pressed between the inner core and the mantle, and because of the Earth`s axial rotation there is friction and heat formation between these two matters. Still, that is not the main heat source. In the outer core at different depths there are different temperature, pressure, viscosity and density, and this results in stratification. Try to spin a tin with condensed milk stored for some time on a shelf. Inside the milk, layers will rub against each other and the tin`s sides. And the fact that friction causes heat is well-known.

According to Letnikov`s theory, heat explosions happen because sometimes heat does not go away to the mantle. In such situation the core contents is of a big role. It includes iron with some nickel and many gases - hydrogen, sulphur and carbon. When explosion happens, a part of the gases mixture detaches and flows away into the mantle. This process is thought to be the cause of most of the abyssal processes.



For millions of years gas streams travel through the mantle to the crust. It takes a lot of energy from the stream and some of them never reach the surface. However, those who succeeded in getting outside cause different troubles, like eruptions, lava flows and earthquakes. Moreover, the stream`s heat loss may be recovered by chemical reactions: the stream contains much hydrogen and 80% of the mantle volume is taken by oxygen. The result of the reaction is water and heat. In addition, such streams carry many rare elements, therefore, producing large areas of minerals.

Until the Earth has the liquid core, the heat flow is guaranteed, but geologists say that, with time, abyssal processes are gradually dying down.

Tatiana Pitchugina | alfa
Further information:
http://www.informnauka.ru/eng/2002/2002-06-28-02_146_e.htm

More articles from Earth Sciences:

nachricht New Measurement Device: Carbon Dioxide As Geothermometer
21.05.2019 | Universität Heidelberg

nachricht Cause for variability in Arctic sea ice clarified
14.05.2019 | Max-Planck-Institut für Meteorologie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Dissolving protein traffic jam at the entrance of mitochondria

23.05.2019 | Life Sciences

Fraunhofer IBMT at BIO 2019: Automation solutions for workflows in stem cell process engineering

23.05.2019 | Trade Fair News

Galaxies As “Cosmic Cauldrons”

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>