Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kalahari Desert soils and climate change

03.04.2008
The sands of the desert are an important and forgotten storehouse of carbon dioxide taken from the world’s atmosphere, scientists heard today (Wednesday 2 April 2008) at the Society for General Microbiology’s 162nd meeting being held this week at the Edinburgh International Conference Centre.

“Desert soils are unusual because the sand grains at the surface are bound together into a crust by bacteria, reducing wind erosion and adding nutrients to the soil. Deserts cover over one third of the world’s land surface and yet our understanding of their contribution to the atmospheric carbon dioxide balance is poor”, says Dr Andrew Thomas of Manchester Metropolitan University.

Sands like those in the Kalahari Desert of Botswana are full of cyanobacteria. These drought resistant bacteria can fix atmospheric carbon dioxide, and together they add significant quantities of organic matter to the nutrient deficient sands.

“We know that globally there is a huge exchange of carbon between the atmosphere and the soil. As average global temperatures rise, scientists are concerned that bacteria will break down organic matter in soils more rapidly, releasing more carbon dioxide into the atmosphere”, says Dr Thomas. “However, there have been very few actual field studies of this carbon exchange through world soils and little information on how they respond to temperature and moisture changes. This is particularly true for deserts. Here the bacteria have to be able to cope with long periods without rain and extreme temperatures, so they lie dormant in the desert soil only springing to life when there is enough moisture”.

The exchange or flux of carbon between the soils and the atmosphere is much smaller over deserts than for areas with more organically rich soils, but the sheer size of deserts makes it globally significant. Even small changes in the carbon balance of desert soils will also be important locally, where soil organic matter underpins fragile ecosystems currently supporting millions of poor pastoral farmers.

“We discovered that even after light rainfall, the gains and losses of carbon dioxide through the sands of the Kalahari Desert were similar in size to those reported for more organic rich grassland soils. Despite being short lived, these raised pulses of activity are a significant and previously unreported contributor to atmospheric carbon dioxide” says Dr Thomas. “Global climate change models have forgotten them”.

Dr Thomas with his colleagues, Dr Stephen Hoon and Dr Patricia Linton also of Manchester Metropolitan University, found that in some conditions, the cyanobacteria in the surface crust were taking net amounts of carbon dioxide out of the atmosphere as they photosynthesised. But after heavy rainfall other types of bacteria deeper in the subsoil became active and their activity masked the uptake of carbon by the surface cyanobacteria by consuming the organic matter in the soil, releasing large quantities of carbon dioxide.

“We also discovered that the fluxes of carbon dioxide from the soil were highly sensitive to temperature. Warmer air but similar soil moisture levels caused greater losses of carbon from the desert soils to the atmosphere”, says Dr Thomas. “These desert soils are contributing significantly to the global carbon dioxide budget. Until recently they have been ignored”.

“We need to know exactly what is happening as a better understanding of the factors controlling activity of the surface living soil cyanobacteria could help inform grazing policy. Millions of poor semi-subsistence pastoral farmers rely on the soils of the Kalahari to provide nutrients for grazing. The carbon produced by the cyanobacteria is a major contributor to the fertility of the soil and it is essential we understand how their metabolism is affected by environmental conditions”, says Dr Thomas.

Lucy Goodchild | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>