Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists design the first map of active faults in the Gibraltar Arc to prevent earthquakes

06.02.2008
Africa and Europe get about 4 mm closer every year in a northeast convergence direction. The exact position and geometry of the boundary between the African and Eurasian plates is unknown, but it is located near the Gibraltar Arc — an area of intense seismic activity which was not studied deeply until now.

A group of researchers from the Andalusian Institute for Earth Sciences (CSIC) and the Department of Geodynamics of the University of Granada described for the first time the physical and mechanical properties of the uppermost part of the Earth’s crust — to a depth of 30 km which is where the highest magnitude earthquakes occur. This study has made it possible to establish the exact position of the active faults of the Gibraltar Arc area which cause earthquakes, thus obtaining valuable geological information which could help determine the areas in which earthquakes are most likely to occur.

The author of this study is Fermín Fernández Ibáñez, whose doctoral thesis Sismicidad, reología y estructura térmica de la corteza del Arco de Gibraltar (Seismicity, reology and thermal structure of the Gibraltar Arc crust) was directed by researchers Juan Ignacio Soto Hermoso and José Molares Soto. This study, which was carried out within the CSIC project entitled The Gibraltar Arc System: Active Geodynamic Processes in the South-Iberian Margins (SAGAS), made the most comprehensive radiography so far in the faults of the Alboran Sea, the westernmost portion of the Mediterranean Sea.

The researchers characterised a region of intense deformation in which the relative movement of blocks is caused by left-lateral strike-slip faults known as “the Transalboran fault system,” which expands from Murcia (Spain) to Alhucemas (Morocco). The other significant fault of the Gibraltar Arc area, which crosses the Transalboran fault perpendicularly, is called Nerja-Yusuf and goes from Málaga (Spain) to the Algerian coast.

Study of oil wells

Fernández and Soto assure that the south of the Iberian Peninsula and the north of Africa are very similar in geology. In order to characterise the way the Gibraltal Arc is being deformed due to pushing plates, the researchers studied oil wells, analysing the disfigurations caused by these forces.

This doctoral thesis could help to prevent natural disasters like the one that occurred in Indonesia in 2004, when a tsunami killed more than 300,000 people and flooded entire cities. In any case, researcher Fernández stated that although the Gibraltar Arc is an area of intense seismic activity and the movements of the faults could produce tsunamis, it is almost impossible that such a phenomenon would occur.

In addition, the study conducted at UGR related for the first time the temperature of the Earth’s crust to its seismic activity, thus determining that the probability of earthquakes is significantly lower in areas of higher temperature. Therefore, the western area of Sierra Nevada and Alhucemas (which are located within the Gibraltar Arc) is the area in which most earthquakes occur due to low temperatures in the Earth’s crust, while the area of Almería (Spain) and the eastern area of the Alboran Sea will probably experience fewer seismic movements.

Results from this interesting study were published in renowned scientific journals like the Journal of Geophysical Research or Tectonics. The research group in which researchers Fernández and Soto participate is a member of Topo-Iberia, an important project which aims at creating an unprecedented temporal seismic broadband net in Spain, composed by a minimum of 80 seismic stations 50-60 km apart and which will have simultaneous and homogenous coverage in different regions. Furthermore, Topo-Iberia will create the biggest Spanish GPS net ever created.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/verNota/prensa.php?nota=465

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>