Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recognizing the Elephant in the Room: Future Climate Impacts across Sectors

17.12.2013
A pioneering collaboration within the international scientific community has provided comprehensive projections of climate change effects, ranging from water scarcity to risks to crop yields.

This interdisciplinary effort, employing extensive model inter-comparisons, allows research gaps to be identified, whilst producing the most robust possible findings.

The results provide crucial insights for decision-making regarding mitigation efforts in the face of potential impact cascades. The analyses are to be published in a special feature of the Proceedings of the National Academy of Sciences that assembles the first results of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP).

This project aims at bringing research on climate impacts onto a new level.

“There is an elephant in the room: current and future climate change impacts. But strangely, many people seem to be blind to it,” says Hans Joachim Schellnhuber, director of the Potsdam Institute for Climate Impact Research and co-author of the special feature’s introduction as well as several of its papers.

“Many decision makers prefer to turn a blind eye to global warming consequences, while many scientists tend to focus on very specific aspects of climate change. So we resemble the fabled blind men, who unknowingly touch different parts of the same elephant: grasping the animal’s trunk, one of the men is convinced he has a snake in his hand, whilst one other mistakes the tail for a rope. To recognize the animal, they must talk to each other to properly identify the individual parts and to bring them together. This is exactly what this international project does.”

More than 30 research teams from 12 countries systematically compared state-of-the-art computer simulations of climate change impacts on a broad range of sectors. The project builds on previous inter-comparison exercises from the fields of agriculture, hydrology, and ecosystems sciences. Results are combined to identify, for example, regional hotspots of climate change – the Amazon, the Mediterranean and East Africa – where several impact types coincide and potentially interact.

Moreover, comparing models helps to understand the differences between them. For example, projections of impacts on food prices are effected by different assumptions about the intensification of land management or changes in international trade. Elucidating the various influences of these measures could help to identify options for effective real-world policies.

“The results clearly indicate that the impacts on nature and society would increase sharply with each degree of global warming,” says Katja Frieler from the ISI MIP coordination team. The findings of the ISI-MIP are amongst the scientific publications that feed into the IPCC’s report on climate change impacts to be presented in March 2014.

One of the core products of ISI-MIP is a public data archive, where the output as well as the input data from the project is available for further research and to promote maximum transparency. A specific aim is to further enhance the quality of the computer models of impacts. After the publication of its first results, the project now enters a second phase, broadening the scope of impacts considered (addressing, for example, the energy industry and global fisheries) and incorporating models that look more closely at specific regions.

“The climate change impacts picture remains far from complete, in particular with regard to socio-economic consequences,” says Pavel Kabat, director of the International Institute for Applied Systems Analysis, co-author of several contributions to the special feature, and co-editor. “The human costs of climate change are often triggered by the biophysical impacts, but are not identical to the impacts themselves. For example, water shortages in some regions might contribute to human conflicts and drive large-scale migration. We already have enough certainty today about climate change impacts to recognize it is high time to act. But as scientists we will work hard to further integrate and strengthen the existing expertise to better see the elephant in the room – and just how dangerous the mighty beast really is.”

Article: Schellnhuber, H.J., Frieler, K., Kabat, P. (2013): The Elephant, the Blind, and the ISI-MIP. Proceedings of the National Academy of Sciences (early online edition) [DOI:10.1073/pnas.1321791111]

Along with this article, further ISI-MIP results are published online by PNAS:

Dankers, R., et al. (2013): First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proceedings of the National Academy of Sciences (early online edition)

Elliott, J., et al (2013): Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences (early online edition)

Friend, A. D., et al. (2013): Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proceedings of the National Academy of Sciences (early online edition)

Haddeland I., et al. (2013): Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences (early online edition)

Nelson, G. C., et al. (2013): Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences (early online edition)

Piontek, F., et al. (2013): Multisectoral climate impact hotspots in a warming world. Proceedings of the National Academy of Sciences (early online edition) [DOI:10.1073/pnas.1222471110]

Prudhomme, C., et al. (2013): Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proceedings of the National Academy of Sciences (early online edition)

Rosenzweig, C., et al. (2013): Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences (early online edition)

Schewe, J., et al. (2013): Multi-model assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences (early online edition)

Warszawski, L., et al. (2013): The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. Proceedings of the National Academy of Sciences (early online edition)

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate
Weitere Informationen:
http://www.pnas.org/cgi/doi/10.1073/pnas.1321791111

Jonas Viering | PIK Pressestelle
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Scientists turn carbon emissions into usable energy
21.01.2019 | Ulsan National Institute of Science and Technology (UNIST)

nachricht Ten-year anniversary of the Neumayer Station III
18.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

How our cellular antennas are formed

22.01.2019 | Life Sciences

Proposed engineering method could help make buildings and bridges safer

22.01.2019 | Architecture and Construction

Bifacial Stem Cells Produce Wood and Bast

22.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>