Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid Sierra Nevada uplift tracked by scientists at the University of Nevada, Reno

04.05.2012
Nevada Geodetic Lab uses GPS and radar for most precise measurements over entire mountain range

From the highest peak in the continental United States, Mt. Whitney at 14,000 feet in elevation, to the 10,000-foot-peaks near Lake Tahoe, scientific evidence from the University of Nevada, Reno shows the entire Sierra Nevada mountain range is rising at the relatively fast rate of 1 to 2 millimeters every year.

"The exciting thing is we can watch the range growing in real time," University of Nevada, Reno's Bill Hammond, lead researcher on the multi-year project to track the rising range, said. "Using data back to before 2000 we can see it with accuracy better than 1 millimeter per year. Perhaps even more amazing is that these miniscule changes are measured using satellites in space."

Miniscule as they may be, the data indicate that long-term trends in crustal uplift suggest the modern Sierra could be formed in less than 3 million years, which is relatively quick when compared to estimates using some geological techniques.

Hammond and his colleagues in the University's Nevada Geodetic Laboratory and University of Glasgow use satellite-based GPS data and InSAR (space-based radar) data to calculate the movements to this unprecedented accuracy. The calculations show that the crust moves upward compared to Earth's center of mass and compared to relatively stable eastern Nevada.

The data may help resolve an active debate regarding the age of the modern Sierra Nevada of California and Nevada in the western United States. The history of elevation is complex, exhibiting features of both ancient (40 million years) and relatively young (less than 3 million years) elevation. The "young" elevation is the uplift Hammond and colleagues have tracked.

"The Sierra Nevada uplift process is fairly unique on Earth and not well understood." Hammond said. "Our data indicate that uplift is distributed along the entire length of the 400-mile-long range, between 35 and 40 degrees north latitude, that it is active, and could have generated the entire range is less than 3 million years, which is young compared to estimates based on some other techniques. It basically means that the latest pulse of uplift is still ongoing."

Possibly contributing to the rapid uplift is the tectonic extension in Nevada and a response to flow in the mantle. Seismologists indicate the mountain range may have risen when a fragment of lower plate peeled off the bottom of the lithosphere allowing the "speedy" uplift, like a ship that has lost its keel. In comparison, other ranges, such as the Alps or Andes, are being formed in an entirely different process caused by contraction as two plates collide.

"We've integrated GPS and InSAR measurement techniques, drawing from experience we developed in the past five years in our work with tectonic deformation, to see how the Sierra is gradually being pushed upwards," Hammond said. "Combined with more GPS stations, and more radar data, detecting motions in the Earth is becoming more precise and ubiquitous. We can see the steady and constant motion of the Sierra in addition to episodic events such as earthquakes."

Hammond's team includes Geoff Blewitt, Hans-Peter Plag and Corné Kreemer from the University of Nevada, Reno's College of Science and Zhenhong Li of the Centre for the Observation and Modeling of Earthquakes, Volcanoes and Tectonics, School of Geographical and Earth Sciences, University of Glasgow in the UK.

GPS data for Hammond and his team's research is collected through the team's MAGNET GPS Network based at the University of Nevada, Reno plus more than 1200 stations from the NSF EarthScope Plate Boundary Observatory and more than 10,000 stations from around the entire planet. These stations include hundreds that cover Nevada, California, Oregon, and Washington. The space-based radar data comes from the European Space Agency with support from NASA.

This research was funded in the United States by the National Science Foundation and NASA and in the United Kingdom by the Natural Environment Research Council.

Their paper, "Contemporary Uplift of the Sierra Nevada, western United States, from GPS and InSAR Measurements" will be published in the peer-reviewed journal Geology in July and has just been made available online.

For more information on Hammond, go to http://www.nbmg.unr.edu/Staff/Hammond.html. For the Nevada Geodetic Laboratory go to http://geodesy.unr.edu.

The University of Nevada, Reno has the largest GPS data-processing center in the world, which processes information from about 10,000 stations around the globe continuously, 24/7. The Nevada Geodetic Laboratory has all publicly available GPS data going back to 1996 and reprocesses all 15-million data files as new data streams come in – every 30 seconds – solving for tens of thousands of parameters at once. It enables real-time positioning for any users. People around the world use it extensively for research such as modeling earthquakes and volcanoes. The information is freely available to anyone on the Internet.

Nevada's land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of 18,000 students and is ranked in the top tier of the nation's best universities. Part of the Nevada System of Higher Education, the University has the system's largest research program and is home to the state's medical school. With outreach and education programs in all Nevada counties and with one of the nation's largest study-abroad consortiums, the University extends across the state and around the world.

Mike Wolterbeek | EurekAlert!
Further information:
http://www.unr.edu

More articles from Earth Sciences:

nachricht New Measurement Device: Carbon Dioxide As Geothermometer
21.05.2019 | Universität Heidelberg

nachricht Cause for variability in Arctic sea ice clarified
14.05.2019 | Max-Planck-Institut für Meteorologie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>