Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollution teams with thunderclouds to warm atmosphere

21.05.2012
New simulation study shows that atmosphere warms when pollution intensifies storms

Pollution is warming the atmosphere through summer thunderstorm clouds, according to a computational study published May 10 in Geophysical Research Letters. How much the warming effect of these clouds offsets the cooling that other clouds provide is not yet clear. To find out, researchers need to incorporate this new-found warming into global climate models.

Pollution strengthens thunderstorm clouds, causing their anvil-shaped tops to spread out high in the atmosphere and capture heat -- especially at night, said lead author and climate researcher Jiwen Fan of the Department of Energy's Pacific Northwest National Laboratory.

"Global climate models don't see this effect because thunderstorm clouds simulated in those models do not include enough detail," said Fan. "The large amount of heat trapped by the pollution-enhanced clouds could potentially impact regional circulation and modify weather systems."

Clouds are one of the most poorly understood components of Earth's climate system. Called deep convective clouds, thunderstorm clouds reflect a lot of the sun's energy back into space, trap heat that rises from the surface, and return evaporated water back to the surface as rain, making them an important part of the climate cycle.

To more realistically model clouds on a small scale, such as in this study, researchers use the physics of temperature, water, gases and aerosols -- tiny particles in the air such as pollution, salt or dust on which cloud droplets form.

In large-scale models that look at regions or the entire globe, researchers substitute a stand-in called a parameterization to account for deep convective clouds. The size of the grid in global models can be a hundred times bigger than an actual thunderhead, making a substitute necessary.

However, thunderheads are complicated, dynamic clouds. Coming up with an accurate parameterization is important but has been difficult due to their dynamic nature.

Inside a thunderstorm cloud, warm air rises in updrafts, pushing tiny aerosols from pollution or other particles upwards. Higher up, water vapor cools and condenses onto the aerosols to form droplets, building the cloud. At the same time, cold air falls, creating a convective cycle. Generally, the top of the cloud spreads out like an anvil.

Previous work showed that when it's not too windy, pollution leads to bigger clouds . This occurs because more pollution particles divide up the available water for droplets, leading to a higher number of smaller droplets that are too small to rain. Instead of raining, the small droplets ride the updrafts higher, where they freeze and absorb more water vapor. Collectively, these events lead to bigger, more vigorous convective clouds that live longer.

Now, researchers from PNNL, Hebrew University in Jerusalem and the University of Maryland took to high-performance computing to study the invigoration effect on a regional scale.

To find out which factors contribute the most to the invigoration, Fan and colleagues set up computer simulations for two different types of storm systems: warm summer thunderstorms in southeastern China and cool, windy frontal systems on the Great Plains of Oklahoma. The data used for the study was collected by different DOE Atmospheric Radiation Measurement facilities.

The simulations had a resolution that was high enough to allow the team to see the clouds develop. The researchers then varied conditions such as wind speed and air pollution.

Fan and colleagues found that for the warm summer thunderstorms, pollution led to stronger storms with larger anvils. Compared to the cloud anvils that developed in clean air, the larger anvils both warmed more -- by trapping more heat -- and cooled more -- by reflecting additional sunlight back to space. On average, however, the warming effect dominated.

The springtime frontal clouds did not have a similarly significant warming effect. Also, increasing the wind speed in the summer clouds dampened the invigoration by aerosols and led to less warming.

This is the first time researchers showed that pollution increased warming by enlarging thunderstorm clouds. The warming was surprisingly strong at the top of the atmosphere during the day when the storms occurred. The pollution-enhanced anvils also trapped more heat at night, leading to warmer nights.

"Those numbers for the warming are very big," said Fan, "but they are calculated only for the exact day when the thunderstorms occur. Over a longer time-scale such as a month or a season, the average amount of warming would be less because those clouds would not appear everyday."

Next, the researchers will look into these effects on longer time scales. They will also try to incorporate the invigoration effect in global climate models.

The research was supported by the U.S. Department of Energy Office of Science. The data from China were gathered under a bilateral agreement with the China Ministry of Sciences and Technology.

Reference: Jiwen Fan, Daniel Rosenfeld, Yanni Ding, L. Ruby Leung, and Zhanqing Li, 2012. Potential Aerosol Indirect Effects on Atmospheric Circulation and Radiative Forcing through Deep Convection, Geophys. Res. Lett. May 10, DOI 10.1029/2012GL051851 (http://www.agu.org/pubs/crossref/2012/2012GL051851.shtml)

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. PNNL employs 4,700 staff, has an annual budget of nearly $1.1 billion, and has been managed for the U.S. Department of Energy by Ohio-based Battelle since the laboratory's inception in 1965. For more, visit the PNNL's News Center, or follow PNNL on Facebook, LinkedIn and Twitter.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Mary Beckman | EurekAlert!
Further information:
http://www.pnnl.gov

More articles from Earth Sciences:

nachricht New studies increase confidence in NASA's measure of Earth's temperature
24.05.2019 | NASA/Goddard Space Flight Center

nachricht New Measurement Device: Carbon Dioxide As Geothermometer
21.05.2019 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

New system by TU Graz automatically recognises pedestrians’ intent to cross the road

27.05.2019 | Information Technology

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>