Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New view of how ocean 'pumps' impact climate change

29.04.2019

Earth's oceans have a remarkable natural ability to pull carbon from the atmosphere and store it deep within the ocean waters, exerting an important control on the global climate.

A large portion of the carbon dioxide emitted when humans burn fossil fuels, for instance, is taken up and stored in the ocean via a set of processes that make up the ocean carbon cycle.


Earth's oceans naturally pull carbon from the atmosphere and store it deep within the ocean waters. The deeper a particle sinks, the better, because the carbon will take a longer time to return to the surface and into the atmosphere. Researchers previously believed the transfer of particles from the surface to the deep ocean occurred simply due to gravity (the gravity pump). Weber and his colleagues found that other processes are important in transferring carbon to the deep ocean, including ocean mixing and transport via animals such as small fish (the migrant pump). The researchers refer to these processes collectively as "particle injection pumps" because they can "inject" particles at much deeper depths before the carbon is released.

Credit: University of Rochester illustration / Michael Osadciw

But, the rapid rate at which carbon dioxide emissions are increasing means the future of the cycle is uncertain, especially when many of the key processes remain poorly understood. In a new paper in the journal Nature, Tom Weber, an assistant professor of Earth and environmental sciences at Rochester, and his colleagues, outlined and quantified critical mechanisms involved in the ocean carbon cycle, specifically the "biological pump."

Their new insights can be used to guide climate computer models to better predict the effects of climate change on a warming world.

SINKING DEEPER INTO THE OCEAN

The biological pump describes the sum of all the biological processes that transfer carbon dioxide from the atmosphere to the deep ocean. Tiny marine plants, known as phytoplankton, take carbon dioxide from the surface ocean to produce biomass.

The biomass clumps together into particles, which then sink to the deep ocean. In the deep ocean, the particles decompose, releasing carbon dioxide. "The net effect is the 'pumping' of CO2 from the atmosphere to the deep ocean," Weber says.

The deeper into the ocean a particle sinks, the longer it will take the carbon to return to the surface and back into the atmosphere. Carbon released at depths of a few hundred meters, for example, is circulated back to the atmosphere on timescales of 10 years or less, but if particles sink into the deep ocean--deeper than 1,000 meters--their carbon can be stored for up to 1,000 years before returning to the surface.

PARTICLE INJECTION PUMPS

Researchers previously believed the transfer of particles from the surface to the deep ocean occurred simply through sinking under the force of gravity--what Weber and his colleagues deem the "biological gravitational pump."

However, in the last few years, scientists have recognized other processes that are important in transferring carbon from surface waters to the deep ocean. As outlined in the paper, these include the physical mixing of the ocean by the wind, by large-scale ocean currents, and by biological transport via animals such as small fish that eat the biomass particles at the surface and excrete them at depth.

The researchers refer to these processes collectively as "particle injection pumps" (PIPs) because they can "inject" particles to much deeper depths--relative to mere gravitational settling--before decomposition occurs and the carbon is released.

"It's a much more efficient way of pulling carbon from the surface into the deep waters," Weber says.

Weber and his colleagues combined observational evidence and new model calculations to quantify for the first time how much carbon is transferred by the PIPs. They found that PIPs are a much more influential factor than previously thought: collectively, they are responsible for as much carbon storage in the ocean as the biological gravitational pump.

THE OCEAN CARBON CYCLE AND CLIMATE CHANGE

Because the ocean carbon cycle is affected by environmental changes in light, temperature, and nutrient availability, the researchers can use their new results to improve climate models and better forecast how the ocean carbon cycle will respond to future global climate change, Weber says. "If we want to have some predictive power with respect to the biological pump, we need to understand all the mechanisms and equip our global climate models with a complete representation."

The ocean carbon cycle is most notably affected by climate change because of warming ocean waters. The deep ocean is filled with cold, dense, and nutrient-rich water while the surface ocean is warmer and lighter. In order to maintain biological productivity, wind stirs the ocean waters, mixing them to bring the nutrient-rich water up to the surface. When ocean temperatures rise due to climate change, however, the density difference between the water in the surface ocean and the water in the deep ocean increases, making it harder for the ocean to mix, Weber says. "Satellite records show the overall productivity of the surface ocean is declining because the stirring of nutrients is becoming less efficient."

Weber's new research adds another "wrinkle to the problem," he says. Previous views of the biological pump indicated that a reduced ocean mixing rate would slow down productivity but "not really affect other processes in the biological pump: once you produce the particles, gravity alone would make them sink and decompose." The new view, however, indicates that a slow-down in mixing will also diminish the PIPs, which are vital to the ocean carbon cycle as "very efficient export mechanisms that get the particles nice and deep where the carbon can be stored longer," Weber says.

If particles aren't brought deep into the ocean, this can, in turn, feed back on climate change. "If carbon dioxide is released at shallower depths, it escapes quicker into the atmosphere, meaning more carbon dioxide in the atmosphere where it contributes to global warming."

Media Contact

Lindsey Valich
lvalich@ur.rochester.edu
585-276-6264

 @UofR

http://www.rochester.edu 

Lindsey Valich | EurekAlert!
Further information:
https://www.rochester.edu/newscenter/ocean-pumps-carbon-cycle-climate-change-377692/

More articles from Earth Sciences:

nachricht New sensor could shake up earthquake response efforts
11.07.2019 | DOE/Lawrence Berkeley National Laboratory

nachricht NASA satellites find biggest seaweed bloom in the world
09.07.2019 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>