Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mineral discoveries in the Galapagos Islands pose a puzzle as to their formation and origin

19.10.2018

Mainz University and the Galapagos National Park Directorate have entered into an agreement that will allow extensive collaborative research into the geological development of the islands

The Galapagos archipelago is one of the most famous groups of islands in the world. Many of the animal and plant species are unique because of the islands' isolated location in the Pacific, 1,000 kilometers off of the coast of Ecuador.


The island of Daphne to the north of Santa Cruz as seen from an aircraft approaching Baltra Airport. This island consists of a volcanic crater rising 120 meters above sea level.

photo/©: Yamirka Rojas-Agramonte

Thanks to a recently-signed special cooperation agreement, geoscientists based at Johannes Gutenberg University Mainz (JGU) in Germany will have the opportunity in coming years to research the geological development of the Galapagos Islands. An unusual mineral has recently been discovered that raises far-reaching questions about the composition of the magma source from which these oceanic islands were formed.

The idea for the collaboration came from geologist Dr. Yamirka Rojas-Agramonte, a member of the Isotope Geology group at JGU's Institute of Geosciences. She has been studying the ages of the rocks from various islands in the archipelago since 2014 and was astounded when she suddenly came across the mineral zircon on a sandy beach.

"It is extremely unusual to find zircons in basalt rock formations, such as those that predominate throughout the Galapagos," explained Rojas-Agramonte. Zircon, a zirconium mineral, is commonly used to date ancient rocks. Zircon takes in trace amounts of uranium when it crystallizes in a newly-formed rock. Over time that uranium slowly decays to lead. The ratio between the lead formed and the uranium left can be used to determine the age of the zircon and thereby its host rock.

The zircon grains, commonly less than 0.2 millimeters in size, are first investigated under the microscope in Mainz and then, if appropriate, sent to China or Australia to be analyzed using a device called a sensitive high-resolution ion microprobe. "For the purposes of so-called SHRIMP dating, we have been collaborating for many years with a lab in Beijing, the Beijing SHRIMP Center," said Professor Alfred Kröner of JGU, shortly before again departing with Galapagos zircon samples in his luggage.

Unexpected discovery of zircons in basalt rock

It has now been established that the zircon originates from young basalt rock, the main rock type that forms the Galapagos Islands. This rock is produced by volcanic eruptions such as those still occurring in the western sector of the archipelago. "Some of our newly discovered zircons are much older, however, than one would expect to find in young magmatic rock," stated Kröner.

How exactly these ancient zircons got into the Galapagos basalts remains a mystery. The explanation might well have wide-ranging implications for understanding the Earth's crust-mantle system and the mantle geodynamics of the Earth. One of the current theories is that previously unexplained recycling processes might have taken place in the deep layers of the mantle.

Geoscientists at Johannes Gutenberg University Mainz and their colleagues from Spain, Australia, and Ecuador working in a wide range of different disciplines will, for the first time, be collaborating in this project in order to investigate the various hypotheses and search for further pieces of the puzzle that will help provide a solution. Over the next few years, they will be researching together on the Galapagos in a multi-disciplinary approach designed to explore a geological enigma, the significance of which could extend well beyond simply clarifying the formation of the Galapagos Islands.

The framework cooperation agreement between Mainz University and the Galapagos National Park Directorate has an initial duration of three years to the end of 2020 and will be extended by specific agreements on individual research projects. For reasons of nature conservation, there are strict controls on access to the Galapagos Islands. In addition to Dr. Yamirka Rojas-Agramonte and Professor Alfred Kröner, sedimentologist Dr. Klemens Seelos has also been permitted to work on-site.

The next expedition involving representatives of the Geophysics, Volcanology, and Petrology groups at JGU is planned for June 2019. Additional partner institutions are the University of Granada, the Australian National University, and Universidad de las Fuerzas Armadas in Quito, Ecuador. The preliminary work has been financed by the German Research Foundation (DFG) and through inner-university research funding provided by Johannes Gutenberg University Mainz.

Images:
http://www.uni-mainz.de/bilder_presse/09_geowiss_isotopen_galapagos_koop_01.jpg
The island of Daphne to the north of Santa Cruz as seen from an aircraft approaching Baltra Airport. This island consists of a volcanic crater rising 120 meters above sea level.
photo/©: Yamirka Rojas-Agramonte

http://www.uni-mainz.de/bilder_presse/09_geowiss_isotopen_galapagos_koop_02.jpg
Yamirka Rojas-Agramonte collecting a sample of weathered basalt rock in a lava cave in the interior of the island of Santa Cruz
photo/©: Yamirka Rojas-Agramonte

http://www.uni-mainz.de/bilder_presse/09_geowiss_isotopen_galapagos_koop_03.jpg
Yamirka Rojas-Agramonte at the heavy mineral concentration on Bahia Barrington beach on Santa Fé Island. Using a technique similar to that of gold panning, the heavy minerals are first extracted from the sand and concentrated.
photo/©: Yamirka Rojas-Agramonte

http://www.uni-mainz.de/bilder_presse/09_geowiss_isotopen_galapagos_koop_04.jpg
Cathode luminescence image of a typical zircon with clearly pronounced concentric zoning. This zoning is evidence of changes in the local chemical composition of the host magma during crystal formation.
photo/©: Alfred Kröner

http://www.uni-mainz.de/bilder_presse/09_geowiss_isotopen_galapagos_koop_05.jpg
The 2017 research team (fltr): Dr. Yamirka Rojas-Agramonte (Mainz), Prof. Antonio Garcia-Casco (Granada, Spain), Prof. Theofilos Toulkerides (Quito, Ecuador), Dr. Klemens Seelos, (Mainz), Prof. Ian Williams (Canberra, Australia), and Prof. Alfred Kröner (Mainz)
photo/©: Yamirka Rojas-Agramonte

Wissenschaftliche Ansprechpartner:

Dr. Yamirka Rojas-Agramonte
Isotope Geology group
Institute of Geosciences
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23247
email: rojas@uni-mainz.de
http://www.geowiss.uni-mainz.de/1251_ENG_HTML.php

Professor Dr. Alfred Kröner
Isotope Geology group
Institute of Geosciences
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-22163
email: kroener@uni-mainz.de
http://www.staff.uni-mainz.de/kroener/

Dr. Klemens Seelos
Institute of Geosciences
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-20326
email: seelos@uni-mainz.de
http://www.geowiss.uni-mainz.de/1080_ENG_HTML.php

Weitere Informationen:

http://www.geowiss.uni-mainz.de/index_ENG.php – Institute of Geosciences at Johannes Gutenberg University Mainz

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Volcanoes under pressure
18.11.2019 | Technical University of Munich (TUM)

nachricht New findings on the largest natural sulfur source in the atmosphere
18.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Designer lens helps see the big picture

21.11.2019 | Interdisciplinary Research

Machine learning microscope adapts lighting to improve diagnosis

21.11.2019 | Life Sciences

Soft skin-like robots you can put in your pocket

21.11.2019 | Interdisciplinary Research

VideoLinks
Science & Research
Overview of more VideoLinks >>>