Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Martian clouds on Earth

08.10.2013
Cloud-chamber experiments show that clouds on Mars form in much more humid conditions than clouds on Earth

At first glance, Mars' clouds might easily be mistaken for those on Earth: Images of the Martian sky, taken by NASA's Opportunity rover, depict gauzy, high-altitude wisps, similar to our cirrus clouds.

Given what scientists know about the Red Planet's atmosphere, these clouds likely consist of either carbon dioxide or water-based ice crystals. But it's difficult to know the precise conditions that give rise to such clouds without sampling directly from a Martian cloud.

Researchers at MIT have now done the next-best thing: They've recreated Mars-like conditions within a three-story-tall cloud chamber in Germany, adjusting the chamber's temperature and relative humidity to match conditions on Mars — essentially forming Martian clouds on Earth.

While the researchers were able to create clouds at the frigid temperatures typically found on Mars, they discovered that cloud formation in such conditions required adjusting the chamber's relative humidity to 190 percent — far greater than cloud formation requires on Earth. The finding should help improve conventional models of the Martian atmosphere, many of which assume that Martian clouds require humidity levels similar to those found on Earth.

"A lot of atmospheric models for Mars are very simple," says Dan Cziczo, the Victor P. Starr Associate Professor of Atmospheric Chemistry at MIT. "They have to make gross assumptions about how clouds form: As soon as it hits 100 percent humidity, boom, you get a cloud to form. But we found you need more to kick-start the process."

Cziczo says the group's experimental results will help to improve Martian climate models, as well as scientists' understanding of how the planet transports water through the atmosphere. He and his colleagues have reported their findings in Journal of Geophysical Research: Planets.

Seeding Martian clouds

The team conducted most of the study's experiments during the summer of 2012 in Karlsruhe, Germany, at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility — a former nuclear reactor that has since been converted into the world's largest cloud chamber.

The facility was originally designed to study atmospheric conditions on Earth. But Cziczo realized that with a little fine-tuning, the chamber could be adapted to simulate conditions on Mars. To do this, the team first pumped all the oxygen out of the chamber, and instead filled it with inert nitrogen or carbon dioxide — the most common components of the Martian atmosphere. They then created a dust storm, pumping in fine particles similar in size and composition to the mineral dust found on Mars. Much like on Earth, these particles act as cloud seeds around which water vapor can adhere to form cloud particles.

After "seeding" the chamber, the researchers adjusted the temperature, first setting it to the coldest temperatures at which clouds form on Earth (around minus 81 degrees Fahrenheit). Throughout the experiment, they cranked the temperature progressively lower, eventually stopping at the chamber's lowest setting, around minus 120 Fahrenheit — "a warm summer's day on Mars," Cziczo says.

By adjusting the chamber's relative humidity under each temperature condition, the researchers were able to create clouds under warmer, Earth-like temperatures, at expected relative humidities. These observations gave the researchers confidence in their experimental setup as they attempted to grow clouds at temperatures that approached Mars-like conditions.

Dialing the temperature down

Over a week, the group created 10 clouds, with each cloud taking about 15 minutes to form. The chamber is completed insulated, so the researchers used a system of lasers, which beam across the chamber, to detect cloud formation. Any clouds that form scatter laser light; this scattering is then detected and recorded by computers, which display the results — the size, number, and composition of cloud particles — for scientists outside the chamber.

By analyzing this data over the following six months, the researchers found that clouds that grew at the lowest temperatures required extremely high relative humidity in order for water vapor to form an ice crystal around a dust particle. Cziczo says it's unclear why Martian clouds need such humid conditions to take shape, but hopes to investigate the question further.

Toward that end, the group plans to return to Germany next fall, when the chamber will have undergone renovations, enabling it to perform cloud experiments at even lower temperatures — conditions that may more closely mimic the icy atmosphere on Mars.

"If we want to understand where water goes and how it's transported through the atmosphere on Mars, we have to understand cloud formation for that planet," Cziczo says. "Hopefully this will move us toward the right direction."

Andrew Carleen | EurekAlert!
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>