Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Los Alamos science sleuth on the trail of a Martian mystery

20.03.2013
Postdoctoral researcher sees promise in data from cutting room floor
When it comes to examining the surface of rocks on Mars with a high-powered laser, five is a magic number for Los Alamos National Laboratory postdoctoral researcher Nina Lanza.

During a poster session today at the 44th Annual Lunar and Planetary Science Conference at The Woodlands, Texas, Lanza described how the laser-shooting ChemCam instrument aboard the Curiosity rover currently searching the surface of Mars for signs of habitability has shown what appears to be a common feature on the surface of some very different Martian rocks during Curiosity’s first 90 days on the Red Planet.

But exactly what that common feature is remains an intriguing mystery—and one that Lanza intends to solve.

The ChemCam instrument uses an extremely powerful laser to vaporize a pinpoint of rock surface. The instrument then reads the chemical composition of the vaporized sample with a spectrometer. The highly accurate laser can fire multiple pulses in the same spot, providing scientists with an opportunity to gently interrogate a rock sample, even up to a millimeter in depth. Many rocks are zapped 30 to 50 times in a single location, and one rock was zapped 600 times.

Members of the ChemCam team generally discard results from the first five laser blasts because of a belief that after the first five blasts, the laser has penetrated to a depth that provides a true representative sample of rock chemistry.

Instead of tossing out those data, however, Lanza looked at them specifically across a diverse set of Martian rocks. She found that the first five shots had chemical similarities regardless the rock type. What’s more, after five shots, like other scientists had noticed, the spectrum from the vaporized rock stabilized into a representative sample of the rock type below.

“Why is it always five shots?” Lanza wondered.

It could be the first five shots were reading a layer of dust that had settled onto the surface of every rock, but results in laboratories on Earth seem to indicate that the first laser blast creates a tiny shockwave that is very effective at clearing dust from the sample. Therefore, if the first blast is dusting off the rocks, the remaining four blasts could be showing that Martian rocks are coated by a substance, similar in structure if not composition, to the dark rock varnish appearing on Earth rocks in arid locations like the desert Southwest.

“The thing about rock varnishes is the mechanism behind why they form is not clearly understood,” Lanza said. “Some people believe that rock varnish results from an interaction of small amounts of water from humidity in the air with the surface of rocks—a chemical reaction that forms a coating. Others think there could be a biological component to the formation of rock varnishes, such as bacteria or fungi that interact with dust on the rocks and excrete varnish components onto the surface.”

Lanza is quick to point out that she’s making no concrete claim as to the identity or origin of whatever is being seen during the first five shots of each ChemCam sampling. The common signature from the first five blasts could indeed be entirely surface dust, or it could be a rock coating or a rind formed by natural weathering processes.

As the mission progresses, Lanza hopes that integrating other instruments aboard Curiosity with ChemCam sampling activities could help rule out unknowns such as surface dust, while careful experiments here on Earth could provide crucial clues for solving the Martian mystery of the first five shots.

“If we can find a reason for this widespread alteration of the surface of Martian rocks, it will tell us something about the Martian environment and the amount of water present there,” Lanza said. “It will also allow us to make the argument that what we’re seeing is the result of some kind of current geological process, which could give us insight into extraterrestrial geology or even terrestrial geology if what we’re seeing is a coating similar to what we find here on Earth.”

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

Further reports about: Alamos ChemCam Curiosity Earth's magnetic field Lanza Mars Martian Winds

More articles from Earth Sciences:

nachricht Ten-year anniversary of the Neumayer Station III
18.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht The pace at which the world’s permafrost soils are warming
16.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>