Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore develops the world's deepest ERT imaging system for CO2 sequestration

13.06.2013
Lawrence Livermore National Laboratory researchers have broken the record for tracking the movement and concentration of carbon dioxide in a geologic formation using the world's deepest Electrical Resistance Tomography (ERT) system.

The research provides insight into the effects of geological sequestration to mitigate the impact of greenhouse gases.


AN ERT electrode band, mounted on non-conductive casing, is prepared for installation. Electrodes are protected by non-conductive, epoxy-based centralizers.

The team led by LLNL's Charles Carrigan obtained time lapse electrical resistivity images during the injection of more than 1 million tons of carbon dioxide (CO2) more than 10,000 feet deep in an oil and gas field in Cranfield, Miss., which represents the deepest application of the imaging technique to date. The previous depth record of about 2,100 feet was held by the CO2SINK Project Consortium in Ketzin, Germany.

"The images provide information about both the movement of the injected CO2 within a complex geologic formation and the change with time of the distribution of CO2 in the porous sandstone reservoir," Carrigan said.

Deep geologic sequestration of CO2 is being evaluated internationally to mitigate the impact of greenhouse gases produced during oil- and coal-based energy generation and manufacturing. Natural gas producing fields are particularly appealing sites for sequestration activities because the same geologic barrier or cap rock permitting the subsurface regime to act as a long term natural gas reservoir also can serve to permanently contain the injected CO2.

ERT allowed Xianjin Yang, another member of the LLNL team, to make a movie of the expanding CO2 plume as it fills the sandstone region between the two electrode wells. To do this required analyzing months of data and using only the highest quality results to produce the images.

The team reports on the design, placement and imaging from the world's deepest ERT system in the June 1 online issue of the International Journal of Greenhouse Gas Control. The research also will appear in an upcoming print copy of the journal.

ERT can potentially track the movement and concentration of the injected CO2 as well as the degree of geologic containment using time-lapse electrical resistivity changes resulting from injecting the fluid into the reservoir formation.

Installing each ERT array in the sequestration reservoir required designing all cabling and electrodes, which were externally mounted on the borehole casing, to survive the trip more than 10,000 feet down a crooked borehole with walls made jagged by broken rocks.

The team then used the ERT array in a challenging environment of high temperature (260 degrees Fahrenheit), high pressure (5,000 psi) and high corrosive fluids to effectively detect CO2 breakthroughs and CO2 saturation changes with time.

"This is a near-real time remote monitoring tool for tracking CO2 migration with time lapse tomographic images of CO2 concentration," Carrigan said.

When converted to CO2 concentration, the images provided information about the movement of the injected CO2 within a complex geologic formation as well as how the storage of the CO2 changed with time.

Carrigan said that given concerns about injection-induced fracturing of the cap rock seal causing leakage of CO2 from the reservoir, higher-resolution ERT also may have an application as an "early-warning" system for the formation of fracture pathways in cap rock that could result in environmental damage to overlying or nearby water resources. Another potential application involves monitoring the boundary of a sequestration lease to ensure that CO2 does not migrate across the boundary to an adjacent parcel.

The ERT project is part the U.S. Department of Energy sponsored Southeast Regional Carbon Sequestration Partnership (SECARB) Cranfield project near Natchez, Miss., which has become the fifth ERT system worldwide and the first in the United States to inject more than a million tons of CO2 into the sub-surface.

The Cranfield study, which was led by Susan Hovorka of the Bureau of Economic Geology at the University of Texas, was funded by Department of Energy, National Energy Technology Laboratory under contract to the Southern States Energy Board.

More Information

"Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs," International Journal of Greenhouse Gas Control

"Going underground to monitor carbon dioxide," LLNL news release, June 2, 2010.

"Locked in rock: Sequestering carbon dioxide underground," Science & Technology Review, May 2005

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>