Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Land-cover changes do not impact glacier loss

06.02.2012
The composition of land surface – such as vegetation type and land use – regulates the interaction of radiation, sensible heat and humidity between the land surface and the atmosphere and, thus, influences ground level climate directly.

For the first time, the Innsbruck climate scientists quantitatively examined whether land-cover changes (LCC) may potentially affect glacier loss. "We used Kilimanjaro in East Africa as a test case, where a significant decrease of forests at elevations between 1,800 and 3,000 meters, caused by illegal deforestation and an increased number of forest fires, has been documented since the 1970s," explains climate researcher Thomas Mölg, who has worked in Berlin since 1 October 2011 but finished the study with his team at the University of Innsbruck.

The glaciers in the Kilimanjaro area have been shrinking for many decades, and climate researchers from Innsbruck and America have conducted thorough glaciological and meteorological measurements for ten years –ideal prerequisites for carrying out a comprehensive study about a potential connection between forest loss and glacier shrinking.

Novel methodology

The prerequisite for conducting this study was a novel methodology that links a glacier and atmospheric model in such a way that no statistical corrections are necessary (published by Kaser/Mölg, 2011 in Journal of Geophysical Research). Direct measurements of various climate elements on Kilimanjaro such as temperature, humidity, radiation, precipitation and glacier mass changes showed that reality can be simulated well by this new methodology. "Based on this evaluation we then modified vegetation cover in the atmospheric model – first showing 1976 and subsequently the current state – and calculated its effect on glacier mass," says Thomas Mölg.

The results show that LCC mainly alter precipitation over glaciers but with different effects on the Northern and Southern ice fields of the mountain (increase or decrease respectively), which results in local increase or decrease of glacier mass. "Depending on the season, LCC contributes not more than seven to 17 % to glacier mass loss in the southern sector. We, therefore, cannot confirm the hypothesis that deforestation at Kilimanjaro contributes significantly to glacier loss," explains Thomas Mölg.

Less precipitation in mid-mountain elevation zones

The results of the study suggest that relatively small-scale land-cover changes, such as on Kilimanjaro, may not have enough impact on the mountain climate to surpass the effects of global climate change on glaciers. "However, another important aspect of the results is that deforestation decreases precipitation significantly more in mid-mountain elevation zones about two kilometers below the glacier than in summit zones". This affects local water reservoirs and reduces water supply for the local population.

Publication:

Mölg/Großhauser/Hemp/Hofer/Marzeion: Limited forcing of glacier loss through land-cover change on Kilimanjaro, Nature Climate Change, published online 5 February 2012

Thomas Mölg | EurekAlert!
Further information:
http://www.uibk.ac.at

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>