Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Land-cover changes do not impact glacier loss

06.02.2012
The composition of land surface – such as vegetation type and land use – regulates the interaction of radiation, sensible heat and humidity between the land surface and the atmosphere and, thus, influences ground level climate directly.

For the first time, the Innsbruck climate scientists quantitatively examined whether land-cover changes (LCC) may potentially affect glacier loss. "We used Kilimanjaro in East Africa as a test case, where a significant decrease of forests at elevations between 1,800 and 3,000 meters, caused by illegal deforestation and an increased number of forest fires, has been documented since the 1970s," explains climate researcher Thomas Mölg, who has worked in Berlin since 1 October 2011 but finished the study with his team at the University of Innsbruck.

The glaciers in the Kilimanjaro area have been shrinking for many decades, and climate researchers from Innsbruck and America have conducted thorough glaciological and meteorological measurements for ten years –ideal prerequisites for carrying out a comprehensive study about a potential connection between forest loss and glacier shrinking.

Novel methodology

The prerequisite for conducting this study was a novel methodology that links a glacier and atmospheric model in such a way that no statistical corrections are necessary (published by Kaser/Mölg, 2011 in Journal of Geophysical Research). Direct measurements of various climate elements on Kilimanjaro such as temperature, humidity, radiation, precipitation and glacier mass changes showed that reality can be simulated well by this new methodology. "Based on this evaluation we then modified vegetation cover in the atmospheric model – first showing 1976 and subsequently the current state – and calculated its effect on glacier mass," says Thomas Mölg.

The results show that LCC mainly alter precipitation over glaciers but with different effects on the Northern and Southern ice fields of the mountain (increase or decrease respectively), which results in local increase or decrease of glacier mass. "Depending on the season, LCC contributes not more than seven to 17 % to glacier mass loss in the southern sector. We, therefore, cannot confirm the hypothesis that deforestation at Kilimanjaro contributes significantly to glacier loss," explains Thomas Mölg.

Less precipitation in mid-mountain elevation zones

The results of the study suggest that relatively small-scale land-cover changes, such as on Kilimanjaro, may not have enough impact on the mountain climate to surpass the effects of global climate change on glaciers. "However, another important aspect of the results is that deforestation decreases precipitation significantly more in mid-mountain elevation zones about two kilometers below the glacier than in summit zones". This affects local water reservoirs and reduces water supply for the local population.

Publication:

Mölg/Großhauser/Hemp/Hofer/Marzeion: Limited forcing of glacier loss through land-cover change on Kilimanjaro, Nature Climate Change, published online 5 February 2012

Thomas Mölg | EurekAlert!
Further information:
http://www.uibk.ac.at

More articles from Earth Sciences:

nachricht New studies increase confidence in NASA's measure of Earth's temperature
24.05.2019 | NASA/Goddard Space Flight Center

nachricht New Measurement Device: Carbon Dioxide As Geothermometer
21.05.2019 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>