Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Icebergs: Mathematical model calculates the collapse of shelf ice

24.08.2017

Shelf ice, as found in Antarctica, refers to giant floating ice sheets that can span thousands of square kilometres. Pieces break off at their edges which form icebergs in the ocean. In order to more effectively predict these break-offs, in a process known as calving, Julia Christmann from the University of Kaiserslautern (TU) has developed mathematical models in cooperation with the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). On the basis of physical factors, it is claimed that these models can be used to predict when and where the ice may collapse. This is important particularly for research teams situated on the ice shelf.

The ice rises up like a sheer cliff face – shelf ice is not only several thousand square kilometres large, it is also more than a hundred metres high in many places. From time to time, pieces break off the edge and crash into the sea below, where they float away in the ocean as icebergs. This was also recently the case with the Larsen C ice shelf.


Julia Christmann in front of the icebreakter "Polarstern" in the Antarctica

Credit: Julia Christmann


Julia Christmann

Credit: Thomas Koziel

Science is unable to accurately predict when and where the ice shelf will break. “Assumptions were always previously based on observations by glaciologists and other researchers. Concrete calculations with physical parameters did not exist,” says Julia Christmann, who is researching technical mechanics at the University of Kaiserslautern with Professor Dr Ralf Müller. As a rule of thumb, she explains, the ice tends to break where it is thinner than 200 metres; in reality, however, there are also many ice shelves that are even thinner.

The calving of ice sheets is a continuous process that is influenced by a number of different factors. Satellite data was also used in order to observe this natural spectacle. “However, they only offer snapshots of the process,” Christmann adds. As part of her doctorate research, she has developed mathematical models to calculate when and where the ice shelf may collapse. A range of different physical factors are germane here.

“The thickness and density of ice can play an important role, for example,” Christmann continues. “The material parameters are also critical, including elastic factors. These mainly influence where the iceberg is calved. There is also the viscosity, which affects the time between break-off events.”

The doctoral student at Kaiserslautern was also supported in her work by Professor Dr Angelika Humbert from the AWI. Humbert is an expert in the field of glaciology. She is also occupied with the properties and motion of giant ice sheets on the Antarctic continent, which constitute 70 percent of the entire supply of freshwater on the planet.

“The ice shelf generally breaks at points that are between a half and full thickness of the ice sheet from the edge,” summarises Christmann. This data may be particularly important for the scientific community, since numerous research stations are located on ice shelves in Antarctica. This includes the German Neumayer Station III or the British station, Halley VI, which was closed for winter this year due to a crack in the ice.

Christmann recently completed her doctoral thesis. She is continuing her research on the properties of ice. She is now focusing on grounding lines in Greenland. This refers to the area in which the ice still touches the ground and merges into floating shelf ice. The researcher intends to find out how these lines change over the course of time.

For enquiries:
Dr Julia Christmann
Technical Mechanics
TU Kaiserslautern
Tel.: 0631 205-2126
Email: jchristm[at]rhrk.uni-kl.de

Melanie Löw | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>