Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High altitude research aircraft explores the upper levels of the Asian Monsoon

31.07.2017

International team of scientists investigates air at altitudes up to 20 km

The Asian Monsoon System is one of the Earth’s largest and most energetic weather systems, and monsoon rainfall is critical to feeding over a billion people in Asia. An international team of scientists led by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), is now conducting the first-ever scientific mission to the upper levels of the monsoon system, using a high-altitude research aircraft flying out of Nepal. The results will help to better understand how this important weather system affects global climate and how it may change in the future.


M55-Geophysika

Photo: Alfred-Wegener-Institut / Markus Rex

During summer, the Asian Monsoon is not only important for Asia but affects weather patterns over the entire northern hemisphere. The Monsoon also acts like an enormous elevator, pumping vast amounts of air and pollutants from the surface up to levels above 16km altitude.

These altitudes are so high that monsoon air then ascends freely into the stratosphere, the stable layer that overlies the lower part of the atmosphere and contains the Earth’s protective ozone layer. Once in the stratosphere, monsoon air spreads globally and persists for years. Satellite images show a large cloud of aerosols – small droplets or dust particles – directly above the monsoon and extending from the Arabian Peninsula to the eastern coast of China.

The formation and properties of the aerosol cloud that sits above the monsoon are a major unknown in climate science, and their potential future changes represent one of the largest uncertainties in climate predictions. Aerosols may either warm or cool the Earth’s surface, depending on their composition and how they interact with cloud formation processes. We also do not understand how monsoon rainfall will respond to changes in emissions of pollutants or to climate change.

An international team of scientists led by the Alfred Wegener Institute is now setting out to close this gap of knowledge. The StratoClim project involves teams from 37 research institutions from 11 European countries, the United States, Bangladesh, India, and Nepal, and marks an important milestone in international research cooperation in the region. Project leader Markus Rex from AWI explains: “For the first time we will be able to study the composition of the air that reaches the stratosphere above the monsoon and affects their composition globally.”

The StratoClim observations will provide the first close-up view of the upper reaches of the monsoon, as no prior research flights have ever sampled this critical part of the Earth’s atmosphere. Fred Stroh from the Research Center Jülich, the leader of the StratoClim aircraft campaign group, reports “The Russian M55-Geophysica research aircraft took off from Kathmandu (Nepal) on the 27th July to carry out its first scientific mission in the air spaces of Nepal, India and Bangladesh, carrying 25 specially developed scientific instruments to altitudes above 20 km – about twice as high as normal aircraft can fly.”

This flight marks the start of a series of nine research flights in this region extending to mid-August 2017. High-altitude airplane flights will be complemented by launches of research balloons from ground stations in Nepal, Bangladesh, China, India and Palau.

Markus Rex summarizes the global importance of the research: “To understand how the monsoon will respond to human emissions of pollutants and to climate change is obviously of crucial importance for the countries directly affected by it. But it matters to all of us as well. Because the monsoon drives weather patterns around the world and affects the stratosphere globally, this research will also improve our understanding of climate processes worldwide and will improve climate predictions where we live.”

Notes for Editors:

Your scientific contact partner at the Alfred Wegener Institute is: Markus Rex (e-mail: markus.rex(at)awi.de)

At the AWI’s Communications and Media Relations department, Sebastian Grote (Tel: +49 (0)471 4831-2006; e-mail: sebastian.grote(at)awi.de) will be pleased to help you with any questions.

More details on StratoClim: http://www.stratoclim.org/

Please find printable images at: https://www.awi.de/nc/en/about-us/service/press/press-release/fluege-ins-unbekan...

The research project StratoClim (Stratospheric and upper tropospheric processes for better climate predictions) is funded by the European Union. Its goal is to better understand key climate processes in the upper troposphere and in the stratosphere to enable more reliable climate predictions. More than 30 research institutions and universities from 15 mostly European countries coordinated by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research are contributing to the project.

The Alfred Wegener Institute pursues research in the Arctic, Antarctic and the oceans of the middle and high latitudes. It coordinates polar research in Germany, while also providing essential infrastructure for the international scientific community, including the research icebreaker Polarstern and stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of the 18 Research Centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>