Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat waves, ice-storms, droughts and hurricanes – their impact on the carbon cycle

28.03.2013
How do climate extremes affect the carbon cycle of land ecosystems? How do the resulting carbon cycle changes in turn affect the climate?

These questions will be discussed during the international “Open Science Conference on Climate Extremes and Biogeochemical Cycles in the Terrestrial Biosphere: impacts and feedbacks across scales” in Seefeld, Austria, from 2nd to 5th April 2013, hosted by the University of Innsbruck.


Soil after drought, Island of Milos, Greece
Photo: Marcel van Oijen, Centre for Ecology and Hydrology (CEH-Edinburgh)

More than 150 scientists from over 20 different countries will meet to discuss the responses of ecosystems to climate variability and weather extremes, based on experimental evidence and modeling of the biosphere-climate system.

Rising atmospheric greenhouse gas concentrations not only lead to global warming but also to increased climate variability and extreme weather situations. Within the past decade an exceptionally high number of extreme heat waves occurred around the globe: Record breaking temperatures hit central Western Europe in 2003, causing a large number of fatalities due to heat stress. In South-Eastern Europe dramatic wildfires ravaged in 2007, especially in Greece. Together with huge forest fires, an extraordinary heat wave with record temperatures led to a high and long-lasting air pollution in western Russia in 2010. The drought in 2011-2012 was reported to be one of the most severe ever recorded in the United States, with an economic loss of billions of dollars and heavy crop failures.

Not only severe droughts and heat waves but also extreme precipitation and windstorms can impact the structure, composition, and functioning of terrestrial ecosystems. The importance of extreme climatic events for the carbon balance became clear after the 2003 heat wave in Central and Southern Europe. Triggered by this month-long anomaly, the ecosystems lost as much CO2 as they had absorbed from the atmosphere through the previous four years under normal weather conditions.
Recent evidence also suggests that extreme weather may influence the carbon balance of our terrestrial biosphere such that it accelerates climate change. Co-organizers Dr. Michael Bahn, Associate Professor at University of Innsbruck, and Dr. Markus Reichstein, Max-Planck Director at the Max-Planck Institute for Biogeochemistry, Jena, state unanimously: “Several lines of evidence indicate water-cycle extremes, in particular droughts, being a dominant risk for the carbon cycle in large parts of Europe. The largest and most diverse and enduring effects of extreme events are expected in forests.”

The “Open Science Conference on Climate Extremes and Biogeochemical Cycles in the Terrestrial Biosphere” is a joint initiative of the EU supported FP7 research project CARBO-Extreme, the US-based network INTERFACE, and the international activity iLEAPS funded by the International Geosphere-Biosphere Program. CARBO-Extreme analyses the impact of climate extremes on the terrestrial carbon cycle. The University of Innsbruck is a partner in the CARBO-Extreme project which is coordinated by the German Max Planck Institute for Biogeochemistry in Jena.
Contact:
Dr. Markus Reichstein (mreichstein@bgc-jena.mpg.de)
Max Planck Institute for Biogeochemistry
Hans-Knoell-Str. 10
07745 Jena, Germany
Ph: +49 (0)3641 57-6273

Susanne Hermsmeier | Max-Planck-Institut
Further information:
http://www.bgc-extremes2013.org
http://www.carbo-extreme.eu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>