Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologic mapping of asteroid Vesta reveals history of large impacts

18.11.2014

A team of 14 scientists led by David Williams of Arizona State University's School of Earth and Space Exploration has completed the first global geologic and tectonic map of the asteroid Vesta. The work reveals that Vesta's history has been dominated by impacts from large meteorites.

The mapping was carried out using images from NASA's Dawn spacecraft, which orbited Vesta between June 2011 and September 2012. The images let scientists create high-resolution geological maps, revealing the variety of Vesta’s surface features in unprecedented detail.


In this detail from the new geological map of Vesta, brown colors represent the oldest, most heavily cratered surface. Purple colors and light blue represent terrains modified by the Veneneia and Rheasilvia impacts, respectively. Light purples and dark blue colors below the equator represent the interior of the Rheasilvia and Veneneia basins. Greens and yellows represent relatively young landslides or other downhill movement and crater impact materials, respectively. Tectonic features such as faults are shown by black lines.

Photo by: NASA/JPL-Caltech/Arizona State University


The global geological map unifies 15 individual quadrangle maps. It uses a Mollweide projection centered on 180 degrees longitude using the Dawn Claudia coordinate system.

Photo by: NASA/JPL-Caltech/Arizona State University

"The geologic mapping campaign at Vesta took about two and a half years to complete," says Williams. "The resulting maps enabled us to construct a geologic time scale of Vesta for comparison to other planets and moons."

The geologic map and timescale appear in a paper by Williams and others in the December 2014 issue of the journal Icarus. The issue also has 10 other papers reporting on Dawn's investigation of Vesta. In addition to Williams, the mapping effort was also led by R. Aileen Yingst of the Planetary Science Institute, Tucson, Arizona, and W. Brent Garry of NASA's Goddard Spaceflight Center, Greenbelt, Maryland.

The mappers found that Vesta’s geologic time scale has been shaped by a sequence of large impact events. The biggest of these were the impacts that blasted the large Veneneia and Rheasilvia craters early in Vesta's history, and the Marcia crater late in its history.

In mapping an extraterrestrial object, scientists begin by studying its surface features to develop a relative chronology of events. They look to see which feature interrupts or disturbs other features, thereby placing them in a relative time sequence. Then, crater by crater, fracture by fracture, scientists build up a chronology of events.

But how long ago did specific events happen? An age in years is quite difficult to determine because the samples scientists have from Vesta – a family of basaltic meteorites called HEDs, for howardite-eucrite-diogenite – do not show a clear formation age (as dated by laboratory methods) that can be linked to specific features on the asteroid.

"So figuring out an actual date in years is a step-by-step-by-step process," explains Williams. "We work with rock samples from the moon, mostly from Apollo missions decades ago. These give actual dates for large lunar impacts." The tricky part, he says, lies in creating a model that links the lunar impact time scale to the rest of the solar system.

In the case of Vesta, scientists have developed two different models to estimate surface ages. One is based on the lunar impact rate, the other on the frequency of asteroid impacts. Thus scientists can use two approaches with crater statistics to date Vesta's surface, but these yield two different age ranges.

Applying the models to Vesta, Williams' team concluded that the oldest surviving crust on Vesta predates the Veneneia impact, which has an age of 2.1 billion years (asteroid system) or 3.7 billion years (lunar system). The Rheasilvia impact likely has an age of around 1 billion years (asteroids) or 3.5 billion years (lunar).

"Vesta's last big event, the Marcia impact, has an age that's still uncertain," says Williams. "But our current best estimates suggest an age between roughly 120 and 390 million years." The difference, he explains, comes from which cratering model is used.

The geologic mapping relied on images taken by the framing camera provided by the Max Planck Institute for Solar System Research of the German Max Planck Society and the German Aerospace Center (DLR). This camera takes panchromatic images and seven bands of color filtered images. Overlapping images provide stereoscopic views that create topographic models of the surface to help the geologic interpretation.

“Geological mapping was crucial for resolving Vesta’s geologic history, as well as providing geologic context to understand compositional information from Dawn's Visible and Infrared (VIR) spectrometer and Gamma Ray and Neutron Detector (GRaND),” says Carol Raymond, Dawn’s deputy principal investigator.

The objective of NASA's Dawn mission, launched in 2007, is to characterize the two most massive objects in the main asteroid belt between Mars and Jupiter. Vesta was thought to be the source of a unique set of basaltic meteorites (the HEDs), and Dawn confirmed the Vesta-HED connection. The Dawn spacecraft is currently on its way to the dwarf planet Ceres, the largest object in the asteroid belt. The spacecraft will arrive at Ceres in March 2015. The Dawn mission is managed by the NASA Jet Propulsion Laboratory in Pasadena, California.

The School of Earth and Space Exploration is an academic unit of ASU's College of Liberal Arts and Sciences.


Robert Burnham, robert.burnham@asu.edu

(480) 458-8207

Mars Space Flight Facility

Robert Burnham | Arizona State University
Further information:
https://asunews.asu.edu/20141117-vesta-map

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>