Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire air pollution weakens forest productivity

21.12.2018

Fire is an important element of Earth system. Every year, global fires directly emit 2 Pg C (billion-ton carbon) into atmosphere, which is ~20% of total emissions from human activities.

In addition to the carbon emissions, fire plumes also generate air pollutants, including ozone (O3) and fine mode aerosols (e.g., PM2.5, particulate matter less than 2.5 μm in diameter).


Indirect carbon loss caused by fire O3 and aerosols.

Credit: Xu Yue

It's well known that these air pollutants may worsen air quality in the local and downwind regions. However, it's not known that they also change land carbon budget by influencing photosynthesis of unburned forests.

Recently, a new study in Nature Communications explored the ecological impacts of fire air pollution. Increases in O3 and aerosols have opposite impacts on plant health.

O3 is phytotoxic and reduces plant photosynthesis, while aerosols may promote photosynthesis by enhancing diffuse radiation. It is unclear what's the net impacts of these pollutants on biosphere from the same fire.

This study combined three state-of-the-art models and a full set of observations from ground sites, satellites, and literature, to quantify the net impacts of fire O3 and aerosols on gross primary productivity (GPP), a metric representing total photosynthesis of forests.

Results show that surface O3 reduces global GPP by 4.9 Pg C (3.6%) every year, in which fire O3 accounts for ~20%. In contrast, global aerosols enhance annual GPP by 1.0 Pg C (0.8%) with fire contributions of only 5%.

The fertilization effect of fire aerosols is very limited, likely because fire emissions usually occur in tropical forests where dense cloud masks the aerosol effects. Consequently, the net impact of fire air pollution is dominated by O3, leaving a reduction of 0.9 Pg C (0.6%) in annual GPP.

Regionally, fire air pollution causes larger damages to forest productivity. For example, the 2006 large fire in Indonesia reduces local GPP by 3.6%. Furthermore, the fire pollution can cause impacts through long-range transport.

We find GPP reductions of 0.6% in eastern U.S. and 0.5% in eastern China where fire events are very limited. In those regions, high level of background O3 from human activities provides such a sensitive environment that even a mild increase in O3 by fires can cause a discernable influence.

This new research reveals a missing pathway of fire impacts on global carbon cycle. The damage to ecosystem productivity not only occurs in fire regimes, but also over the downwind areas through long-range transport of air pollution.

"Such negative impacts may exacerbate in the future as fire activities are expected to escalate in a warming climate." said Xu Yue, the first author of the study from Institute of Atmospheric Physics, Chinese Academy of Sciences.

Media Contact

Ms. Zheng Lin
jennylin@mail.iap.ac.cn
86-108-299-5053

 @aasjournal

http://english.iap.cas.cn/ 

Ms. Zheng Lin | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-018-07921-4

More articles from Earth Sciences:

nachricht Is climate change a threat to marine ecosystems in the Benguela upwelling system?
07.01.2019 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht First detection of rain over the ocean by navigation satellites
20.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

Im Focus: Tumors backfire on chemotherapy

Some patients with breast cancer receive chemotherapy before the tumor is removed with surgery. This approach, called 'neoadjuvant' therapy, helps to reduce the size of the tumor to facilitate breast-conserving surgery, and can even eradicate the tumor, leaving few or no cancerous cells for the surgeon to remove. In those cases, the patients are very likely to remain cancer-free for life after surgery.

But not all tumors shrink under chemotherapy. If the tumor resists neoadjuvant therapy, there can be a higher risk of developing metastatic disease, meaning...

Im Focus: One of the world's fastest cameras films motion of electrons

Kiel research team examines ultrafast conversion of light energy in a solid

During the conversion of light into electricity, such as in solar cells, a large part of the input light energy is lost. This is due to the behaviour of...

Im Focus: First detection of rain over the ocean by navigation satellites

In order to analyse climate change or provide information about natural hazards, it is important to gather knowledge about the rain. Better knowledge of precipitation and its distribution could, for example, help protect against river flooding. A new approach uses, for the first time, information contained in radar signals from navigation satellites to detect rain over the sea. The technology could help to monitor atmospheric precipitation better than before.

In order to analyse climate change or provide information on natural hazards, for example, it is important for researchers to gather knowledge about rain.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Overtones can provide faster data communication

10.01.2019 | Information Technology

New therapeutic concept controls pathogenic T cells relevant in multiple sclerosis

10.01.2019 | Life Sciences

Mission completed – EU partners successfully test new technologies for space robots in Morocco

10.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>