Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake impact on submarine slopes: subtle erosion versus significant strengthening

26.06.2019

Active margins, where an oceanic plate slides under a continental plate, may cause the largest earthquakes and tsunamis on earth. Besides their catastrophic impact on coastal communities, they are also known for shifting large amounts of sediments from the margin slopes into deep ocean trenches. Now a study led by geologists from the University of Innsbruck discovered for the very first time direct evidence of earthquake-triggered sediment erosion of surface sediments on a submarine slope close to the rupture area of the great 2011 Tohoku-oki earthquake.

Whereas most previous research assumed that sediment transport by earthquakes only happened by sliding of sediment packages (i.e. submarine landslides), that are several meters thick, the recently-discovered process of surficial remobilization involves the stripping of only a thin veneer of sediment over an extensive area.


Scientists and shipboard crew await the arrival of a new sediment core onboard research vessel RV Sonne in 2016.

T. Schwestermann

At first view a few missing centimeters of sediment do not look very spectacular. However, the fact that it affects a vast area has tremendous implications for all studies based on the remobilization of marine sediment by earthquakes, such as research on pre-historical earthquakes, deposition of organic carbon into the deep ocean and even the potential tsunami hazard by submarine landslides.

"Surficial remobilization was hypothesized based on studies of basin deposits. However, to really understand this important process it is crucial to investigate the place where it takes place: the submarine slopes", explains Jasper Moernaut, Assistant Professor at the Institute of Geology.

Mind the gap

The researchers combined chemical and physical analyses to detect small centimeter scale gaps in the sediment taken from a slope offshore Japan. Subsequent dating then revealed the potential of the gaps being caused by seismic shaking.

"We were quite amazed when we found that not only one, but three gaps were present in this small 15 cm section of sediment core", says Ariana Molenaar, PhD student at the Institute of Geology. "When we dated these three gaps we found that they link to the three strongest regional earthquakes with a magnitude larger than eight, indicating that this is a systematically repeating process."

No one before has examined deep sea slopes with this method. A slope site where erosion takes place is surely the last place one would take a sediment core. "Our pilot study is the first to target a submarine slope to investigate this process, showing the potential of this method", says Michael Strasser, Professor at the Institute of Geology. The research team is now applying their strategy in different settings – even in lakes − to further advance their understanding of this newly-discovered process.

Contrasting effect on submarine slopes

Besides the shedding of the uppermost few centimeters, earthquake shaking has another very contrasting effect on the submarine slope: the sediments that remain actually get stronger. This process, called "seismic strengthening", occurs due to the compaction of sediments by violent shaking.

"In the ocean, this leads to very stable slope sequences and thus a remarkable absence of submarine landslides", says Jasper Moernaut. So the good news is that − despite the frequent occurrence of strong earthquakes at active ocean margins − tsunamis triggered by submarine landslides are relatively uncommon in these regions.

Wissenschaftliche Ansprechpartner:

Ariana Willemina Molenaar, MSc
Tel.: +43 512 507 54232
Mail: Ariana.Molenaar@uibk.ac.at

Originalpublikation:

https://dx.doi.org/10.1029/2019GL082350
Earthquake Impact on Active Margins: Tracing Surficial Remobilization and Seismic Strengthening in a Slope Sedimentary Sequence. Ariana Molenaar, Jasper Moernaut, Gauvain Wiemer, Nathalie Dubois, Michael Strasser. DOI: 10.1029/2019GL082350

Lisa Marchl, MSc. | Universität Innsbruck
Further information:
http://www.uibk.ac.at

More articles from Earth Sciences:

nachricht NASA, NOAA analyses reveal 2019 second warmest year on record
16.01.2020 | NASA/Goddard Space Flight Center

nachricht New assessment of gas locked in ice in European waters
16.01.2020 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Molecules move faster on a rough terrain

20.01.2020 | Physics and Astronomy

Spider-Man-style robotic graspers defy gravity

20.01.2020 | Physics and Astronomy

Laser diode emits deep UV light

20.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>