Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep down fracking wells, microbial communities thrive

25.10.2016

Snacking on fracking fluid sustains microbes, enlivens the chemical mix

Microbes have a remarkable ability to adapt to the extreme conditions in fracking wells, according to a study published in the October issue of Nature Microbiology.


This is an illustration of microbes inside a fracking well.

Credit: Illustration courtesy of PNNL

Scientists led by researchers at Ohio State University found that microbes actually consume some of the chemical ingredients commonly used in the fracking process, creating new compounds which in turn support microbial communities below ground. The process allows the microbes to survive in very harsh environments that include very high temperatures, pressures, and salinity.

The work, based on samples from hydraulically fractured wells in Pennsylvania and Ohio, helps scientists understand the complex interactions among microbes -- important for understanding the planet's environment and subsurface. The findings also help scientists understand what is happening in fracking wells and could offer insight into processes such as corrosion.

David Hoyt, a scientist within the Environmental Molecular Sciences Laboratory (EMSL) at the Department of Energy's Pacific Northwest National Laboratory, was part of the team that ferreted out the geochemical indicators of microbial activity.

The team studied microbes in fracking fluid from more than a mile and a half below the ground surface. Researchers measured the metabolic byproducts excreted by the microbes, which can tell scientists what compounds the microbes are producing, where they are drawing energy from, and what they need to stay alive.

The sampling of a microbial community's byproducts or metabolites gives insight into the community the same way a blood test yields information about a person's health, eating habits, and lifestyle.

"A thorough look at the metabolites of a community allows us to detect what chemical changes are occurring over time, how they support microbial life in the deep subsurface and what are the common biochemical strategies for these microbes that prevail across different shale formations," said Hoyt, a biochemist.

Consequences for methane levels, corrosion

Using multiple samples drawn from the two wells over a 10-month period, the team identified 31 different microbes in fluids produced from hydraulically fractured shales. The team found that fractured shales contained similar microbial communities even though they came from wells hundreds of miles apart in different kinds of shale formations.

The complex mix - with some microbes producing compounds that others use or feed upon - produces some interesting outcomes. One particularly interesting compound, glycine betaine, is what allows the microbes to thrive by protecting them against the high salinity found in the wells. Other microbes can subsequently degrade the compound to generate more food for the bacteria that produce methane. Yet another process may produce substances that contribute to the corrosion of the steel infrastructure in wells.

The scientists even discovered a new strain of bacteria inside the wells which it dubbed "Frackibacter."

The scientists say more work is needed to understand the implications of the study. Microbial action is central to how much carbon enters Earth's atmosphere and for understanding how chemicals in the ground change and move. Studies like this one that contribute new information about microbial communities could have implications beyond fracking.

"The study highlights the resilience of microbial life to adapt to and colonize a habitat structured by physical and chemical features very different from their origin," said corresponding author Kelly Wrighton, assistant professor of microbiology and biophysics at Ohio State.

To do the study, researchers drew upon resources at two DOE Office of Science User Facilities. At EMSL, Hoyt used nuclear magnetic resonance instruments to analyze the metabolic byproducts of the microbes. Resources at the Joint Genome Institute at Lawrence Berkeley National Laboratory helped researchers unravel the genetic sequences of microorganisms within the communities.

###

The work was funded primarily by the National Science Foundation, with additional support from the DOE Office of Science and the Alfred P. Sloan Foundation.

Reference:

Rebecca A. Daly, Mikayla A. Borton, Michael J. Wilkins, David W. Hoyt, Duncan J. Kountz, Richard A. Wolfe, Susan A. Welch, Daniel N. Marcus, Ryan V. Trexler, Jean D. MacRae, Joseph A. Krzycki, David R. Cole, Paula J. Mouser and Kelly C. Wrighton, Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales, Nature Microbiology, Sept. 5, 2016, http://dx.doi.org/10.1038/NMICROBIOL.2016.146.

Tom Rickey | EurekAlert!

Further reports about: metabolic metabolites microbes microbial microbial communities microbial life

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>