Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corals show ocean temperature boundary rising with climate change

12.10.2010
Researchers looking at corals in the western tropical Pacific Ocean have found signs of a profound shift in the depth where warm surface water and colder deeper water meet--a shift predicted by computer models of global warming.

The finding is the first physical evidence supporting what climate modelers have been predicting as the effects of global climate change on the subsurface ocean circulation.

The new study has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

"We're trying to find a way to understand how the warm water in the tropical Pacific has changed in the last century, but more importantly during the last several decades," says Branwen Williams, who conducted this research while a doctoral student at Ohio State University in Columbus, Ohio. She is now a postdoctoral fellow at the University of Toronto in Ontario, Canada.

"The Pacific is really important since it serves as a strong driver and changes in this ocean can have a very strong impact on global climate and oceanography."

What plagues modelers and researchers alike is the limited amount of information available about the ocean when studying climate change. Satellite data and physical measurements are mainly restricted to the ocean's surface waters. What happens deeper in the waters is often an unknown.

Williams and Andrea Grottoli, an associate professor of earth sciences at Ohio State and Williams' former advisor, turned to a prolific form of soft, flexible coral, the Gorgonians, growing on a reef off the island nation of Palau.

"These corals 'sway' with the current underwater," Grottoli explains, "like trees in the wind. Since they aren't restricted to shallow and warmer surface waters like other tropical corals, they provide an opportunity to reconstruct a picture of subsurface ocean circulation in a region."

Specifically, the researchers were interested in how the boundary layer between the warmer, shallow water and the colder deeper water -- the thermocline -- has changed. But directly measuring that over time and across a broad area is impossible.

Instead, they used the soft corals as a substitute, a proxy, for determining how the thermocline rose and fell over time. Working with samples taken from corals at five meters (16.4 feet), 85 meters (279 feet) and 105 meters (345 feet), they analyzed the chemical structure of the coral skeleton that had built up over time.

Slices cut through the base "trunk" of the coral revealed concentric circles resembling tree rings which showed the growth of the "trunk" over time. By analyzing material from the rings from the outer surface inward to the center, they assembled a growth record covering the last century or so.

They were looking for the ratio between two isotopes of nitrogen in the material as a clue to how the thermocline rose or fell over time. Warmer waters above the thermocline contained lower levels of nutrients resulting in organic matter with a high ratio of nitrogen-15 to nitrogen-14 isotopes. Waters below the thermocline held higher levels of nutrients resulting in organic matter with a low ratio of nitrogen-15 to nitrogen-14 isotopes.

As the polyps in the coral consumed the organic matter over the years, the nitrogen isotopes were chemically recorded in the coral. By comparing the nitrogen-15 to nitrogen-14 ratios in samples from the three depths, Williams and Grottoli were able to draw a picture of how the thermocline moved.

"Over several decades, specifically since the mid- to late-1970s, the records show that the mean depth of the thermocline has been getting shallower," Williams says.

The researchers did a similar analysis of the ratio of two carbon isotopes in the coral samples as well. "I think it's fair to say that the carbon isotope record supports this interpretation," Grottoli says. "It's another piece of evidence backing our conclusions."

The researchers were also looking at how the coral record meshed with the Pacific Decadal Oscillation (PDO), a long-lived pattern of climate variability similar to the El Niño phenomenon.

While El Niño changes over a period of years, the PDO changes over decades.

"Climate modelers looking at how the Pacific might respond to global warming have predicted that the atmospheric patterns in the tropical Pacific would weaken, and if that happened, you would expect the thermocline to get shallower in the western tropical Pacific," Williams says.

"Our data are some of the first proxy data to support what the modelers have been predicting."

Grottoli saysthat the thermocline shift in the 1970s is important because it coincides with changes in the PDO from a negative phase to a positive phase.

"We think the thermocline rose when the PDO shifted," she says, "that it was a cumulative effect of both the natural variability of the PDO plus the warming global temperatures." Grottoli says that their coral record covered two other known times when the PDO shifted - in the 1920s and 1940s when average ocean termperatures were a bit lower than today - but neither caused a rise in the thermocline, based on their study.

The researchers want to repeat their study using coral samples from other locations, moving eastward across the Pacific, to test their findings that the thermocline shift wasn't a regional phenomenon, that it is occurring all across the ocean basin, Williams says.

Along with Williams and Grottoli, Patrick Colin, director of the Coral Reef Research Foundation, assisted in the project. Support for the research came from the National Science Foundation, the PADI Foundation, the Andrew Mellon Foundation and the National Ocean Sciences Accelerator Mass Spectrometry Facility at the Woods Hole Oceanographic Institution.

Notes for Journalists
As of the date of this press release, the paper by Williams et al. is still "in press" (i.e. not yet published). Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper by clicking on this link:

http://www.agu.org/journals/pip/gl/2010GL044867-pip.pdf

Or, you may order a copy of the paper by emailing your request to Maria-Jose Vinas at mjvinas@agu.org. Please provide your name, the name of your publication, and your phone number.

Images:
Available for download at:
http://researchnews.osu.edu/archive/thermoclinepix.htm
Title:
"Recent shoaling of the nutricline and thermocline in the western tropical Pacific"

Contact information for the authors:

Branwen Williams, Tel. +1 (905) 828-5419; Mail branwen.williams@utoronto.ca Andrea Grottoli, Tel +1 (614) 292-5782; Mail grottoli.1@osu.edu

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>