Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulations shed light on the physics of rainbows

07.12.2011
Computer scientists at UC San Diego, who set out to simulate all rainbows found in nature, wound up answering questions about the physics of rainbows as well.

The scientists recreated a wide variety of rainbows – primary rainbows, secondary rainbows, redbows that form at sunset and cloudbows that form on foggy days – by using an improved method for simulating how light interacts with water drops of various shapes and sizes. Their new approach even yielded realistic simulations of difficult-to-replicate “twinned” rainbows that split their primary bow in two.


A range of simulated rainbows: From left: Rainbow based on the prevailing theory to simulate rainbows, primary rainbow with supernumerary bow, primary bow and double rainbow, primary bow with supernumerary bows and twinned rainbow, where the primary bow splits in two.

UC San Diego alumnus Iman Sadeghi, who did the work while a Ph.D. student at the Jacobs School of Engineering, his advisor, computer science professor Henrik Wann Jensen, and scientists from Spain, England and Switzerland, are set to publish their findings in ACM Transactions on Graphics in December of this year.

“This goes beyond computer graphics,” Jensen said. “We now have an almost complete picture of how rainbows form.”

Jensen is no stranger to advances in computer graphics. He earned an Academy Award in 2004 for research that brought life-like skin to animated characters. He has worked on a number of Hollywood blockbusters, including James Cameron’s “Avatar.”

Jensen, Sadeghi and colleagues originally set out to simulate rainbows to better understand how spherical water drops interact with light, resulting in the bright, multi-colored arcs that we are used to seeing when rain stops or in tropical, humid weather. They were hoping to improve techniques used in animated movies and video games.

“You usually don’t get the opportunity to study such beautiful phenomena while working on your Ph.D thesis,” said Sadeghi, who is now a software engineer in the graphics division of Google in Santa Monica. “There is a lot more to rainbows than meets the eye.”

As they started running various simulations, the scientists realized that the interaction of light with spherical drops could not explain some kinds of rainbows, such as twinned rainbows. Scientists turned to research showing that, as a water drop falls, air pressure flattens the bottom of it and shapes it like a burger. Jensen and his team called these slightly deformed water drops “burgeroids.” “It’s not a very mathematical term, but we like to use it,” Jensen said. Simulations based on the so-called burgeroids, rather than on spherical drops of water, allowed the researchers to replicate a wide range of rainbows found in nature. “We are the first to present an accurate simulation of twinned rainbows,” Sadeghi said.

The basic mechanism behind the formation of rainbows has been well understood for hundreds of years: A beam of light is both reflected and refracted within the water drop, and becomes strongly concentrated near the “rainbow angle” in the drop. The rainbow angle changes with the color of the light. As a result, sunlight separates into its spectral components, forming the colors we see in the sky. “The variation in the appearance of rainbows is due to the size and shape of rain drops” Sadeghi said.

It is surprising that the physics of rainbows are still not completely understood, Jensen said. In the past, eminent scientists, including Isaac Newton and French mathematician Rene Descartes, made calculations and conducted experiments to explain how rainbows form. But today, funding for rainbow research is scarce and so is work on the topic.

Jensen’s quest to learn about the physics of rainbows led him to the Light and Color in Nature conference at St. Mary’s College in St. Mary’s City, Md. He served as keynote speaker and met Philip Laven, an internationally renowned expert on rainbows, who became one of the study’s co-authors.

Until now, most simulations of rainbows had assumed that water drops are spherical, which isn’t true for large rain drops, Laven said. In this paper, researchers have adopted a completely different approach and developed a more realistic model to recreate rainbows, he said.

“The simulations shown in this paper offer the prospect of a better understanding of real rainbows,” Laven said. “I hope that the next step will be to use these new techniques for a systematic investigation of rainbows caused by realistically shaped rain drops.”

Jensen, Sadeghi, Laven and their colleagues plan to present their findings at the SIGGRAPH conference in 2012, which will take place in Los Angeles. Jensen also plans to attend the next Light and Color in Nature conference, which will take place in Alaska. Will he try to simulate the Northern Lights next? He just might, he said.

Ioana Patringenaru | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=1144

More articles from Earth Sciences:

nachricht The seismicity of Mars
25.02.2020 | ETH Zurich

nachricht Major wind-driven ocean currents are shifting toward the poles
25.02.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>