Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015

Understanding the differences and similarities will help improve how models represent storm clouds and other convective processes.

The Science


Image courtesy of the ARM Climate Research Facility (Flickr) via a Creative Commons License

Data collected from the Atmospheric Radiation Measurement Climate Research Facility’s Southern Great Plains site (shown here) was used to evaluate and compare climate model simulations of precipitation.

Precipitation is difficult to represent in global climate models. Although most single-column models can reproduce the observed average precipitation reasonably well, there are significant differences in their details, including mean precipitation intensity. Scientists evaluated the performance of seven single-column models, used by global models to complex processes, by comparing simulated surface precipitation with observations.

The Impact

The different single-column models’ performances and associations with large-scale conditions provide insights on how to improve climate models’ representation of convection, the movement of heat or air through fluids. Convection is integral to forming storm clouds. The insights gained here will also improve approaches for future testing.

Summary

Precipitation is one of the most poorly parameterized physical processes in global climate models. Scientists often use a single grid-box column of a global climate model or a single-column model to more efficiently study and test the process representations or parameterization schemes in global climate models. The single-column model approach is also a key strategy of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research activity.

However, most single-column model intercomparison studies organized by ARM have been focused on special cases or week- to month-long periods. To make a statistically meaningful comparison and evaluation of modeled precipitation, researchers conducted 3-year-long single-column model simulations of seven global climate models participating in the Fast-physics System Testbed and Research (FASTER) project at the ARM Southern Great Plains site.

Results of the study, conducted by DOE scientists at Brookhaven National Laboratory, show that although most single column models can reproduce the observed average precipitation reasonably well, there are significant differences in their details.

These variations (both among models and between models and observations) include differences between daytime and nighttime, warm and cold seasons, frequency and mean precipitation intensity, and convective and stratiform partition. Further analysis reveals distinct meteorological backgrounds for large underestimation and overestimation precipitation events. The former occur in strong ascending regimes with negative low-level horizontal heat and moisture influx, while the latter occur in the weak or moderate ascending regimes with positive low-level horizontal heat and moisture influx.

Funding

This work is part of the FASTER project supported by the U.S. Department of Energy’s Earth System Modeling program.

Publication

H. Song, W. Lin, Y. Lin, A.B. Wolf, R. Neggers, L.J. Donner, A.D. Del Genio, Y. Liu, “Evaluation of precipitation simulated by seven SCMs against the ARM observations at the SGP site.” Journal of Climate 26 (15), 5467–5492 (2013). [DOI: 10.1175/JCLI-D-12-00263.1]

Kristin Manke | newswise

More articles from Earth Sciences:

nachricht Seismic study reveals huge amount of water dragged into Earth's interior
18.12.2018 | National Science Foundation

nachricht A damming trend
17.12.2018 | Michigan State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>