Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate researchers discover new rhythm for El Niño

27.05.2013
El Niño wreaks havoc across the globe, shifting weather patterns that spawn droughts in some regions and floods in others. The impacts of this tropical Pacific climate phenomenon are well known and documented.

A mystery, however, has remained despite decades of research: Why does El Niño always peak around Christmas and end quickly by February to April?


This is a schematic figure for the suggested generation mechanism of the combination tone: The annual cycle (Tone 1), together with the El Niño sea surface temperature anomalies (Tone 2) produce the combination tone.

Credit: Malte Stuecker

Now there is an answer: An unusual wind pattern that straddles the equatorial Pacific during strong El Niño events and swings back and forth with a period of 15 months explains El Niño's close ties to the annual cycle. This finding is reported in the May 26, 2013, online issue of Nature Geoscience by scientists from the University of Hawai'i at Manoa Meteorology Department and International Pacific Research Center.

"This atmospheric pattern peaks in February and triggers some of the well-known El Niño impacts, such as droughts in the Philippines and across Micronesia and heavy rainfall over French Polynesia," says lead author Malte Stuecker.

When anomalous trade winds shift south they can terminate an El Niño by generating eastward propagating equatorial Kelvin waves that eventually resume upwelling of cold water in the eastern equatorial Pacific. This wind shift is part of the larger, unusual atmospheric pattern accompanying El Niño events, in which a high-pressure system hovers over the Philippines and the major rain band of the South Pacific rapidly shifts equatorward.

With the help of numerical atmospheric models, the scientists discovered that this unusual pattern originates from an interaction between El Niño and the seasonal evolution of temperatures in the western tropical Pacific warm pool.

"Not all El Niño events are accompanied by this unusual wind pattern" notes Malte Stuecker, "but once El Niño conditions reach a certain threshold amplitude during the right time of the year, it is like a jack-in-the-box whose lid pops open."

A study of the evolution of the anomalous wind pattern in the model reveals a rhythm of about 15 months accompanying strong El Niño events, which is considerably faster than the three- to five-year timetable for El Niño events, but slower than the annual cycle.

"This type of variability is known in physics as a combination tone," says Fei-Fei Jin, professor of Meteorology and co-author of the study. Combination tones have been known for more than three centuries. They where discovered by violin builder Tartini, who realized that our ear can create a third tone, even though only two tones are played on a violin.

"The unusual wind pattern straddling the equator during an El Niño is such a combination tone between El Niño events and the seasonal march of the sun across the equator" says co-author Axel Timmermann, climate scientist at the International Pacific Research Center and professor at the Department of Oceanography, University of Hawai'i. He adds, "It turns out that many climate models have difficulties creating the correct combination tone, which is likely to impact their ability to simulate and predict El Niño events and their global impacts."

The scientists are convinced that a better representation of the 15-month tropical Pacific wind pattern in climate models will improve El Niño forecasts. Moreover, they say the latest climate model projections suggest that El Niño events will be accompanied more often by this combination tone wind pattern, which will also change the characteristics of future El Niño rainfall patterns.

Citation: Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H.-L. Ren (2013), A combination mode of the annual cycle and the El Niño/Southern Oscillation, Nature Geoscience, May 26 online publication at http://dx.doi.org/10.1038/ngeo1826.

Funding:

This study was supported by US NSF grant ATM1034798, US Department of Energy grant DESC005110, US NOAA grant NA10OAR4310200, the 973 Program of China (2010CB950404) and the China Meteorological Special Project (GYHY201206033). A.T. was also supported by US NSF grant 1049219 and through the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) through its sponsorship of the International Pacific Research Center (IPRC).

Author contacts:

Malte Stuecker
Department of Meteorology
School of Ocean and Earth Science and Technology
University of Hawaii at Manoa
Honolulu, Hawaii 96822
email: stuecker@hawaii.edu
phone: 808-956-7110
Axel Timmermann
Professor, International Pacific Research Center and Department of Oceanography
School of Ocean and Earth Science and Technology
University of Hawaii at Manoa
Honolulu, Hawaii 96822
email: axel@hawaii.edu
phone: 808-956-2720
Fei-Fei Jin
Professor
Department of Meteorology
School of Ocean and Earth Science and Technology
University of Hawaii at Manoa
Honolulu, Hawaii 96822
email: jff@hawaii.edu
phone: 808-956-4645
International Pacific Research Center Media Contact:

Gisela E. Speidel
International Pacific Research Center
School of Ocean and Earth Science and Technology
University of Hawaii at Manoa
Honolulu, Hawaii 96822
The International Pacific Research Center (IPRC) of the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawai'i at Manoa, is a climate research center founded to gain greater understanding of the climate system and the nature and causes of climate variation in the Asia-Pacific region and how global climate changes may affect the region. Established under the "U.S.-Japan Common Agenda for Cooperation in Global Perspective" in October 1997, the IPRC is a collaborative effort between agencies in Japan and the United States.

Gisela Speidel | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Earth Sciences:

nachricht "Airlift" facility: TU Freiberg tests new mining technology in research and training mine
22.10.2019 | Technische Universität Bergakademie Freiberg

nachricht Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells
21.10.2019 | University of British Columbia

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>