Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change to continue to year 3000 in best case scenarios

10.01.2011
New paper in Nature Geoscience examines inertia of carbon dioxide emissions

New research indicates the impact of rising CO2 levels in the Earth's atmosphere will cause unstoppable effects to the climate for at least the next 1000 years, causing researchers to estimate a collapse of the West Antarctic ice sheet by the year 3000, and an eventual rise in the global sea level of at least four metres.

The study, to be published in the Jan. 9 Advanced Online Publication of the journal Nature Geoscience, is the first full climate model simulation to make predictions out to 1000 years from now. It is based on best-case, 'zero-emissions' scenarios constructed by a team of researchers from the Canadian Centre for Climate Modelling and Analysis (an Environment Canada research lab at the University of Victoria) and the University of Calgary.

"We created 'what if' scenarios," says Dr. Shawn Marshall, Canada Research Chair in Climate Change and University of Calgary geography professor. "What if we completely stopped using fossil fuels and put no more CO2 in the atmosphere? How long would it then take to reverse current climate change trends and will things first become worse?" The research team explored zero-emissions scenarios beginning in 2010 and in 2100.

The Northern Hemisphere fares better than the south in the computer simulations, with patterns of climate change reversing within the 1000-year timeframe in places like Canada. At the same time parts of North Africa experience desertification as land dries out by up to 30 percent, and ocean warming of up to 5°C off of Antarctica is likely to trigger widespread collapse of the West Antarctic ice sheet, a region the size of the Canadian prairies.

Researchers hypothesize that one reason for the variability between the North and South is the slow movement of ocean water from the North Atlantic into the South Atlantic. "The global ocean and parts of the Southern Hemisphere have much more inertia, such that change occurs more slowly," says Marshall. "The inertia in intermediate and deep ocean currents driving into the Southern Atlantic means those oceans are only now beginning to warm as a result of CO2 emissions from the last century. The simulation showed that warming will continue rather than stop or reverse on the 1000-year time scale."

Wind currents in the Southern Hemisphere may also have an impact. Marshall says that winds in the global south tend to strengthen and stay strong without reversing. "This increases the mixing in the ocean, bringing more heat from the atmosphere down and warming the ocean."

Researchers will next begin to investigate more deeply the impact of atmosphere temperature on ocean temperature to help determine the rate at which West Antarctica could destabilize and how long it may take to fully collapse into the water.

The paper "Ongoing climate change following a complete cessation of carbon dioxide emissions" by Nathan P. Gillett, Vivek K. Arora, Kirsten Zickfeld, Shawn J. Marshall and William J. Merryfield will be available online at http://www.nature.com/ngeo/index.html

Jennifer Myers | EurekAlert!
Further information:
http://www.ucalgary.ca
http://www.nature.com/ngeo/index.html

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>