Atmospheric scientists trace the human role in Indonesian forest fires

“During the late 1970s, Indonesian Borneo changed from being highly fire-resistant to highly fire-prone during drought years, marking the period when one of the world's great tropical forests became one of the world's largest sources of pollution,” says Field, a PhD student of atmospheric physics.

“Ultimately, this abrupt transition can be attributed to rapid increases in deforestation and population growth. The resulting occurrences of haze currently rank among the world's worst air pollution episodes, and are a singularly large source of greenhouse gas emissions.”

Sumatra has suffered from large fires at least since the 1960s, but Indonesian Borneo seems to have been resistant to large fires – even in dry years – until population density and deforestation increased substantially and land use changed from small-scale subsistence agriculture to large-scale industrial agriculture and agro-forestry.

“We've had a good understanding of fire events since the mid 1990s, but little before this due to the absence of fire data from satellites,” says Field, who collaborated with Guido van der Werf of VU University Amsterdam and Sam Shen of San Diego State University. “However, one of the major impacts of large-scale fires is a reduction in visibility due to the smoke produced. Visibility is recorded several times a day at airports in the region, and these records proved to be an excellent indicator of severe fire activity. We were able to piece together visibility observations back to the 1960s, and hence develop a longer term record of the fires.”

Having a long-term record of the fires allowed the scientists to better understand their causes. “Using weather records, we were able to estimate the specific rainfall level below which large fires have occurred in the previous two decades. In turn, we found that the rainfall over Indonesia was influenced equally by the Indian Ocean Dipole and the El Niño Southern Oscillation phenomena. Hopefully, this information can be used to better anticipate and prevent future haze disasters in Indonesia.”

Field says that there is a direct link between the increased prevalence of severe fires and haze disasters and the man-made change in land use. “The visibility record also showed, quite strikingly, the impact of human settlement on a previously pristine tropical forest. This should give pause to further agro-forestry expansion in Indonesia, particularly for oil palm as a source of biofuel.”

Media Contact

Sean Bettam EurekAlert!

More Information:

http://www.utoronto.ca

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors