Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assessing the impact of human-induced climate change

20.01.2016

Scientists apply new method to determine whether specific climate impacts can be traced to human-caused emissions

The past century has seen a 0.8°C (1.4°F) increase in average global temperature, and according to the Intergovernmental Panel on Climate Change (IPCC), the overwhelming source of this increase has been emissions of greenhouse gases and other pollutants from human activities.


This image shows confidence in attributing observed impacts to regional climate trends, irrespective of the cause for those climate trends. Blue symbols indicate impacts where the observed climate trend has been attributed to anthropogenic forcing with at least medium confidence in a major or minor role. The confidence bars indicate the combined confidence of the impact and climate attribution step, so confidence can be lower than medium for icons in color as a result of low confidence in impact attribution. The respective climate driver is indicated by the color of the confidence bars (red, atmospheric air temperature; violet, ocean surface temperature; blue, precipitation). Impacts corresponding to regional climate trends with no, very low or low confidence in attribution to anthropogenic forcing are shown in grey. A low confidence in climate attribution results mainly from lack of monitoring, lack of a clear precipitation response, and inconsistency between the direction of reported trends and trends documented in global observational products over the default period.

Credit: Gerrit Hansen, Potsdam Institute for Climate Impact Research

Scientists have also observed that many of Earth's glaciers, ecosystems and other systems are already being impacted by rising regional temperatures and altered rainfall amounts and patterns.

What remains unclear is precisely what fraction of the observed changes in these climate-sensitive systems can confidently be attributed to human-related influences, rather than mere natural regional fluctuations in climate.

So Gerrit Hansen of the Potsdam Institute for Climate Impact Research in Germany and Dáithí Stone of Lawrence Berkeley National Laboratory (Berkeley Lab) developed and applied a novel methodology for answering this challenging question. Their work was published in Nature Climate Change on December 21, 2015.

Their computer modeling-based study focused on various particular regional impacts around the world identified in the last IPCC report (such as melting glaciers and snow ice in Europe, changes in terrestrial ecosystems in Asia, wildfires in the state of Alaska, etc.).

The IPCC report listed over 100 such impacts of various kinds in various regions across the globe. The Hansen-Stone study focused on the regional climate trends relevant to these impacts over the 40-year period 1971-2010.

Using a sophisticated algorithm, the study essentially required satisfaction of three distinct types of tests. First, the algorithm assessed the adequacy of the available climate data--the so-called observational record--related to the particular regional impact over the 40-year period. Was the data sufficient to provide a basis for understanding what actually had been taking place?

Next, the algorithm determined whether the climate models the researchers used provided sufficient resolution or detail concerning regional climate so as to be considered an appropriate source of information. Finally, the researchers examined collections of model simulations with and without human emissions factored in to understand to what degree human emissions were responsible for a given impact, by comparing these simulations against observed trends.

The result of each test of data set quality or of observation-simulation agreement was expressed as a numerical score, and then these scores were merged into an overall measure of confidence in the hypothesis that human-generated emissions have affected the regional climate, ranging from "none" to "very high".

"There are many ways we could combine the scores", says Stone, "but we found that it didn't matter which plausible method we used--the results all pointed to the same conclusions."

Their analysis revealed that almost two-thirds of the listed impacts related specifically to the warming over land and near the surface of the ocean could confidently be attributed to human-generated emissions. However, the researchers could not find the same kind of link for trends in precipitation.

According to Stone, cases where the link between human-generated greenhouse gas emissions and local warming trends were weak were often due to the fact that the climate observational record was insufficient in those regions to build a clear picture about what has been happening over the past several decades.

"Previous analyses linking observed impacts to climate change have been generic in nature, addressing whether there is an influence of human-related warming on impacts globally, without an inference to individual impacts," says Hansen. "Our analysis is the first to bridge these gaps for a large range of impacts, by assessing the role of human-related emissions in each impact individually, including impacts related to trends in precipitation and sea ice."

"Studies linking emissions to climate change impacts provide the most stringent test available for evaluating the accuracy and confidence of our projections of impacts in a future warmer world," says Wolfgang Cramer, Director of the Mediterranean Institute for Marine and Terrestrial Biodiversity and Ecology in Aix-en-Provence, France.

"With these tests, we can be much more confident in our calculations of how a 4°C world will differ from a 1.5°C world. It is crucial that we continue to develop and maintain observational efforts around the world in order to continue documenting how the world is responding to our greenhouse emissions, as well as to agreed reductions in those emissions."

###

Stone and Hansen's work was partially supported by the Department of Energy's Office of Science and the German Ministry of Education and Research.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

Media Contact

Linda Vu
lvu@lbl.gov
510-495-2402

 @BerkeleyLab

http://www.lbl.gov 

Linda Vu | EurekAlert!

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>