Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Archeologists Investigate Ice Age Hominins Adaptability to Climate Change

18.11.2011
Complex computational modeling provides clues to Neanderthal extinction

Computational modeling that examines evidence of how hominin groups evolved culturally and biologically in response to climate change during the last Ice Age also bears new insights into the extinction of Neanderthals. Details of the complex modeling experiments conducted at Arizona State University and the University of Colorado Denver will be published in the December issue of the journal Human Ecology, available online Nov. 17.

“To better understand human ecology, and especially how human culture and biology co-evolved among hunter-gatherers in the Late Pleistocene of Western Eurasia (ca. 128,000-11,500 years ago) we designed theoretical and methodological frameworks that incorporated feedback across three evolutionary systems: biological, cultural and environmental,” said Michael Barton, a pioneer in the area of archaeological applications of computational modeling at Arizona State University.

“One scientifically interesting result of this research, which studied culturally and environmentally driven changes in land-use behaviors, is that it shows how Neanderthals could have disappeared not because they were somehow less fit than all other hominins who existed during the last glaciation, but because they were as behaviorally sophisticated as modern humans,” said Barton, who is lead author of the published findings.

The paper “Modeling Human Ecodynamics and Biocultural Interactions in the Late Pleistocene of Western Eurasia” is co-authored by Julien Riel-Salvatore, an assistant professor of anthropology at the University of Colorado Denver; John Martin “Marty” Anderies, an associate professor of computational social science at ASU in the School of Human Evolution and Social Change and the School of Sustainability; and Gabriel Popescu, an anthropology doctoral student in the School of Human Evolution and Social Change at ASU.

“It’s been long believed that Neanderthals were outcompeted by fitter modern humans and they could not adapt,” said Riel-Salvatore. “We are changing the main narrative. Neanderthals were just as adaptable and in many ways, simply victims of their own success.”

The interdisciplinary team of researchers used archeological data to track behavioral changes in Western Eurasia over a period of 100,000 years and showed that human mobility increased over time, probably in response to environmental change. According to Barton, the last Ice Age saw hunter-gathers, including both Neanderthals and the ancestors of modern humans, range more widely across Eurasia searching for food during a major shift in the Earth’s climate.

The scientists utilized computer modeling to explore the evolutionary consequences of those changes, including how changes in the movements of Neanderthals and modern humans caused them to interact – and interbreed – more often.

According to Riel-Salvatore, the study offered further evidence that Neanderthals were more flexible and resourceful than previously assumed.

“Neanderthals had proven that they could roll with the punches and when they met the more numerous modern humans, they adapted again,” Riel-Salvatore said. “But modern humans probably saw the Neanderthals as possible mates. As a result, over time, the Neanderthals died out as a physically recognizable population.”

To reach their conclusion, the researchers ran a computer program for the equivalent of 1,500 generations showing that as Neanderthals and modern humans expanded their yearly ranges, the Neanderthals were slowly absorbed by more numerous modern humans until they had disappeared as a recognizable population.

“We tested the modeling results against the empirical archaeological record and found that there is evidence that Neanderthals, and moderns, did adapt their behaviors in the way in which we modeled,” explained Barton. “Moreover, the modeling predicts the kind of low-level genetic admixture of Neanderthal genes that are being found in the newest genetic studies just now being published.

“In other words, successful behavioral adaptations to severe environmental conditions made Neanderthals, and other non-moderns about whom we know little, vulnerable to biological extinction, but at the same time, ensured they made a genetic contribution to modern populations,” Barton said.

The authors noted that “the methods we illustrate here offer a robust, new framework in which researchers can begin to examine the effects that such invisible characteristics could have on the observable record.”

“The kind of modeling we did in this research is very new in paleoanthropology, as is the continental scope of the archaeological analysis we used to test the model results,” noted Barton.

“However, such computational modeling can refine our understanding of long-term human impact on the environment that can help inform land-use decisions for our future,” said Barton, who also is co-director of ASU’s Center for Social Dynamics and Complexity, which leverages the emerging field of complex systems to foster interdisciplinary research on fundamental questions of social life.

The research presented in Human Ecology was supported in part by the National Science Foundation, a Fulbright Senior Research Fellowship and a Fulbright Graduate Student Fellowship.

REFERENCE:
Barton CM et al. (2011) Modeling Human Ecodynamics and Biocultural Interactions in the Late Pleistocene of Western Eurasia. Human Ecology. DOI 10.1007/s10745-011-9433-8
About Arizona State University
Arizona State University is the largest public research university in the United States under a single administration, with total student enrollment of more than 72,000 in metropolitan Phoenix, the nation’s sixth-largest city. ASU is creating a new model for American higher education, an unprecedented combination of academic excellence, entrepreneurial energy and broad access. Its research is inspired by real world application, blurring the boundaries that traditionally separate academic disciplines. ASU champions intellectual and cultural diversity, and welcomes students from all 50 states and more than 100 nations across the globe. More at http://newamericanuniversity.asu.edu.
About the University of Colorado Denver
The University of Colorado Denver offers more than 120 degrees and programs in 13 schools and colleges and serves more than 28,000 students. CU Denver is located on the Denver Campus and the Anschutz Medical Campus in Aurora, Colo. For more information, visit the CU Denver Newsroom, http://www.ucdenver.edu/about/newsroom/Pages/Newsroom.aspx.
SOURCES:
Arizona State University (www.asu.edu)
C. Michael Barton, Michael.Barton@asu.edu
University of Colorado Denver (www.ucdenver.edu)
Julien Riel-Salvatore, julien.riel-salvatore@ucdenver.edu
MEDIA CONTACTS:
Arizona State University
Carol Hughes, carol.hughes@asu.edu
480-965-6375 direct line | 480-254-3753 cell
University of Colorado Denver
David Kelly, david.kelly@ucdenver.edu
303-315-6374 direct line
Journal Human Ecology, published by Springer (www.springer.com)
Joan Robinson, Joan.Robinson@springer.com
+49-6221-4878130 (Germany)

Carol Hughes | Newswise Science News
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>