Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Catastrophic Drought Leads to Question: How Severe Can Climate Change Become?

25.02.2011
Extreme megadrought in Afro-Asian region likely had consequences for Paleolithic cultures

How severe can climate change become in a warming world?

Worse than anything we've seen in written history, according to results of a study appearing this week in the journal Science.

An international team of scientists led by Curt Stager of Paul Smith's College, New York, has compiled four dozen paleoclimate records from sediment cores in Lake Tanganyika and other locations in Africa.

The records show that one of the most widespread and intense droughts of the last 50,000 years or more struck Africa and Southern Asia 17,000 to 16,000 years ago.

Between 18,000 and 15,000 years ago, large amounts of ice and meltwater entered the North Atlantic Ocean, causing regional cooling but also major drought in the tropics, says Paul Filmer, program director in the National Science Foundation's (NSF) Division of Earth Sciences, which funded the research along with NSF's Division of Atmospheric and Geospace Sciences and its Division of Ocean Sciences.

"The height of this time period coincided with one of the most extreme megadroughts of the last 50,000 years in the Afro-Asian monsoon region with potentially serious consequences for the Paleolithic humans that lived there at the time," says Filmer.

The "H1 megadrought," as it's known, was one of the most severe climate trials ever faced by anatomically modern humans.

Africa's Lake Victoria, now the world's largest tropical lake, dried out, as did Lake Tana in Ethiopia, and Lake Van in Turkey.

The Nile, Congo and other major rivers shriveled, and Asian summer monsoons weakened or failed from China to the Mediterranean, meaning the monsoon season carried little or no rainwater.

What caused the megadrought remains a mystery, but its timing suggests a link to Heinrich Event 1 (or "H1"), a massive surge of icebergs and meltwater into the North Atlantic at the close of the last ice age.

Previous studies had implicated southward drift of the tropical rain belt as a localized cause, but the broad geographic coverage in this study paints a more nuanced picture.

"If southward drift were the only cause," says Stager, lead author of the Science paper, "we'd have found evidence of wetting farther south. But the megadrought hit equatorial and southeastern Africa as well, so the rain belt didn't just move--it also weakened."

Climate models have yet to simulate the full scope of the event.

The lack of a complete explanation opens the question of whether an extreme megadrought could strike again as the world warms and de-ices further.

"There's much less ice left to collapse into the North Atlantic now," Stager says, "so I'd be surprised if it could all happen again--at least on such a huge scale."

Given what such a catastrophic megadrought could do to today's most densely populated regions of the globe, Stager hopes he's right.

Stager also holds an adjunct position at the Climate Change Institute, University of Maine, Orono.

Co-authors of the paper are David Ryves of Loughborough University in the United Kingdom; Brian Chase of the Institut des Sciences de l'Evolution de Montpellier in France and the Department of Archaeology, University of Bergen, Norway; and Francesco Pausata of the Geophysical Institute, University of Bergen, Norway.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>