Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Atom Trap for Water Dating

28.02.2017

Heidelberg physicists develop new dating method for the earth and environmental sciences

A Heidelberg physics project funded by the German Research Foundation (DFG) will focus on a new type of dating method for use in the earth and environmental sciences. The research team will deploy a special radioactive isotope of the noble gas argon (Ar) for the purpose of water dating.


Atom trap wherein 39Ar atoms are captured and detected

Florian Freundt, Institute of Environmental Physics, Heidelberg University

This isotope is useful for determining age in the range of 50 to 1,000 years. Prof. Dr Markus Oberthaler of the Kirchhoff Institute for Physics and Prof. Dr Werner Aeschbach of the Institute of Environmental Physics of Heidelberg University will direct the three-year project. The DFG has approved funding in the amount of approximately one million euros. Research is dated to begin in March 2017.

The project, “ArTTA-10mL: An instrument for 39Ar-dating of small ice and water samples”, was selected for funding from the DFG's first-time call for bids for "New Instrumentation for Research." The work is a continuation of a long-standing collaboration between the working groups of Prof. Oberthaler and Prof. Aeschbach, who have already successfully used the dating method based on the noble gas radioisotope 39Ar and developed a prototype measurement device. The Heidelberg researchers intend to design the new, one-of-a-kind instrument for routine use on small samples and then make it available to other researchers.

Dating in the earth and environmental sciences is largely based on radioactive isotopes whose gradual decay provides time information. Because it is the only isotope that covers the important age range of 50 to 1,000 years, the noble gas radioisotope 39Ar is highly interesting for dating in ground water research, oceanography and glacier research.

The fact that it is extremely rare makes the work very challenging. Measurements in the 1960s showed only a single 39Ar atom in one quadrillion argon atoms in air. Dating ground or ocean water by detecting the radioactive decay of 39Ar requires samples of at least one ton water.

The Heidelberg measurement process is based on the fundamentally new method of Atom Trap Trace Analysis (ATTA), wherein 39Ar atoms are captured and detected in an atom trap. This technology for "manipulating" atoms was perfected in Heidelberg in recent years. It makes it possible to reduce the required sample size by a factor of 100 to 1,000, according to Prof. Oberthaler. In a preceding project, the researchers were able to demonstrate that measuring 39Ar is possible in principle using this procedure.

Now, using ocean water and Alpine ice, they have provided evidence that the 39Ar ATTA measurement can also be realised using small samples of only 25 litres of water or an argon volume of ten millilitres or less. "That opens up completely new application horizons. The need for such analyses is great, especially in the field of tracer oceanography," explains Prof. Aeschbach.

Markus Oberthaler conducts research at the Kirchhoff Institute for Physics, Werner Aeschbach at the Institute of Environmental Physics. Prof. Aeschbach is also Director of the Heidelberg Center for the Environment (HCE).

Contact:
Prof. Dr Markus Oberthaler, Kirchhoff-Institute for Physics
Phone +49 6221 54-5170, markus.oberthaler@kip.uni-heidelberg.de

Prof. Dr Werner Aeschbach, Institute of Environmental Physics
Phone +49 6221 54-6331, aeschbach@iup.uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.kip.uni-heidelberg.de/matterwaveoptics/research/atta
http://www.iup.uni-heidelberg.de/institut/forschung/groups/aquasys/gp/projects/p...

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Volcanoes under pressure
18.11.2019 | Technical University of Munich (TUM)

nachricht New findings on the largest natural sulfur source in the atmosphere
18.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>