Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acidified ocean water widespread along North American West Coast

01.06.2017

A three-year survey of the California Current System along the West Coast of the United States found persistent, highly acidified water throughout this ecologically critical nearshore habitat, with "hotspots" of pH measurements as low as any oceanic surface waters in the world.

The researchers say that conditions will continue to worsen because the atmospheric carbon dioxide primarily to blame for this increase in acidification has been rising substantially in recent years.


This is an acidification sensor on the Oregon Coast.

Credit: Oregon State University

One piece of good news came out of the study, which was published this week in Scientific Reports. There are "refuges" of more moderate pH environments that could become havens for some marine organisms to escape more highly acidified waters, and which could be used as a resource for ecosystem management.

"The threat of ocean acidification is global and though it sometimes seems far away, it is happening here right now on the West Coast of the United States and those waters are already hitting our beaches," said Francis Chan, a marine ecologist at Oregon State University and lead author on the study.

... more about:
»ocean acidification »ocean water

"The West Coast is very vulnerable. Ten years ago, we were focusing on the tropics with their coral reefs as the place most likely affected by ocean acidification. But the California Current System is getting hit with acidification earlier and more drastically than other locations around the world."

A team of researchers developed a network of sensors to measure ocean acidification over a three-year period along more than 600 miles of the West Coast. The team observed near-shore pH levels that fell well below the global mean pH of 8.1 for the surface ocean, and reached as low as 7.4 at the most acidified sites, which is among the lowest recorded values ever observed in surface waters.

The lower the pH level, the higher the acidity. Previous studies have documented a global decrease of 0.11 pH units in surface ocean waters since the beginning of the Industrial Revolution. Like the Richter scale, the pH scale in logarithmic, so that a 0.11 pH unit decrease represents an increase in acidity of approximately 30 percent.

Highly acidified ocean water is potentially dangerous because many organisms are very sensitive to changes in pH. Chan said negative impacts already are occurring in the California Current System, where planktonic pteropods - or small swimming snails - were documented with severe shell dissolution.

"This is about more than the loss of small snails," said Richard Feely, senior scientist with the National Oceanic and Atmospheric Administration's Pacific Marine Environmental Laboratory. "These pteropods are an important food source for herring, salmon and black cod, among other fish. They also may be the proverbial 'canary in the coal mine' signifying potential risk for other species, including Dungeness crabs, oysters, mussels, and many organisms that live in tidepools or other near-shore habitats."

Previous studies at OSU have chronicled the impact of acidified water on the Northwest oyster industry.

Chan said the team's observations, which included a broad-scale ocean acidification survey via ship by NOAA, did not vary significantly over the three years - even with different conditions, including a moderate El Niño event.

"The highly acidified water was remarkably persistent over the three years," Chan said. "Hotspots stayed as hotspots, and refuges stayed as refuges. This highly acidified water is not in the middle of the Pacific Ocean; it is right off our shore. Fortunately, there are swaths of water that are more moderate in acidity and those should be our focus for developing adaptation strategies."

The researchers say there needs to be a focus on lowering stressors to the environment, such as maintaining healthy kelp beds and sea grasses, which many believe can partially mitigate the effects of increasing acidity.

Further, the moderately acidified refuge areas can be strategically used and managed, Chan pointed out.

"We probably have a hundred or more areas along the West Coast that are protected in one way or another, and we need to examine them more closely," he said. "If we know how many of them are in highly acidified areas and how many are in refuge sites, we can use that information to better manage the risks that ocean acidification poses."

Managing for resilience is a key, the researchers conclude.

"Even though we are seeing compromised chemistry in our ocean waters, we still have a comparably vibrant ecosystem," Chan said. "Our first goal should be to not make things worse. No new stresses. Then we need to safeguard and promote resilience. How do we do that? One way is to manage for diversity, from ensuring multiple-age populations to maintaining deep gene pools.

"The greater the diversity, the better chance of improving the adaptability of our marine species."

Chan, a faculty member in the College of Science at Oregon State University, was a member of the West Coast Ocean Acidification and Hypoxia Panel appointed by the governments of California, Oregon, Washington and British Columbia.

Francis Chan | EurekAlert!

Further reports about: ocean acidification ocean water

More articles from Earth Sciences:

nachricht A damming trend
17.12.2018 | Michigan State University

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>