Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A perfect sun-storm

28.09.2016

A geomagnetic storm provided unique observations that resolved a long-standing scientific problem. For decades, scientists had asked how particles hitting the Earth's magnetosphere were lost. A likely mechanism involved certain electromagnetic waves scattering particles into the Earth's atmosphere. More recently, another mechanism was proposed that caused particles to be lost in interplanetary space. Yuri Shprits from the GFZ and the University of Potsdam, together with colleagues from several institutions, found that both mechanisms play a role. “This study will help us predict and now-cast the space environment and protect valuable satellites”, says Yuri Shprits.

A geomagnetic storm on January 17, 2013, provided unique observations that finally resolved a long-standing scientific problem. For decades, scientists had asked how particles hitting the Earth's magnetosphere were lost. A likely mechanism involved certain electromagnetic waves scattering particles into the Earth's atmosphere. More recently, another mechanism was proposed that caused particles to be lost in interplanetary space.


Visualization of the Earth‘s magnetic environment (Van Allen belts) and magnetic field lines. For more information see the end of the press release.

Martin Rother, GFZ

Yuri Shprits from the GFZ German Research Centre for Geosciences and the University of Potsdam, together with colleagues from several institutions, recently found that both mechanisms play a role affecting particles at different speeds.

“This study resolves some fundamental scientific questions about our space environment and may also help understand fundamental processes that occur elsewhere in space, on the Sun, in outer planets, distant galaxies, and exoplanets,” says Yuri Shprits. He adds: “This study will also help us predict and now-cast the space environment and protect valuable satellites in space.” The study will appear in Nature Communications on Wednesday, September 28, 2016.

Using measurements from the first US satellite mission, Explorer 1, launched on January 31, 1958, physicist James Van Allen discovered that space was radioactive. Earth is surrounded by two donut-shaped regions of very high particle radiation nested in each other that are referred to as Van Allen Radiation Belts. The high-energy particles that populate the belts create a very harsh environment for satellites and humans in space.

Having very high energy and flying at a speed very close to the speed of light, these particles can induce differential charging on the surface or inside the spacecraft and cause numerous satellite anomalies for telecommunication, navigation, scientific, and Earth-observing satellites. The particles that are most difficult to protect spacecraft from are relativistic and ultra-relativistic electrons.

In recent years, there has been much interest in understanding the Van Allen Radiation Belts. Now more than ever, we rely on technology in space. New technologies of electric orbit raising now require telecommunication satellites to spend a very long time in the Van Allen belts and GPS satellites to operate right in the heart of the belts. Increased miniaturization of space electronics makes satellites more vulnerable to space radiation than ever before.

While it is possible to increase satellite shielding and protect the satellites from relativistic particles (speeds of greater than 0.9 of the speed of light), shielding from ultra-relativistic particles (speeds of greater than 0.99 of the speed of light) is practically impossible. Understanding the dynamics of these particle populations has been a major challenge for scientists since space radiation was discovered over half a century ago. Early observations showed that the belts are very dynamic. Unlike oceans and atmospheres that do not change significantly in short time scales, fluxes of particles in the radiation belts can change by up to a factor of 1000 in a matter of hours or less. The most dramatic are so-called dropouts that often occur during geomagnetic storms that are caused by the solar flares or fast solar wind from the coronal holes.

Since the end of the 1960s and the beginning of the 1970s, much research has been devoted to understanding the loss of electrons from the Van Allen belts. Scientists studied observations from the ground, balloon observations of X-ray bursts and in-situ observations. The loss mechanisms remained elusive and not well understood.

“And yet understanding of loss processes is required to specify the radiation environment and develop models that can now-cast and forecast the radiation environment,” says Yuri Shprits who recently joined the GFZ German Research Centre for Geosciences in a joint appointment with the University of Potsdam.

One of the proposed theories was that particles are scattered into the atmosphere by Electromagnetic Ion Cyclotron Waves (EMIC). These waves are produced by the injection of ions that are heavier than electrons and carry a lot of energy. These waves can potentially scatter electrons into the atmosphere. Up until recently, that remained the most likely candidate for the loss of electrons. In 2006, another mechanism was suggested by Yuri Shprits and colleagues. In this mechanism, particles were lost to the interplanetary space, which resulted in the depletion of particle density and the outward diffusion of electrons. This theory received much attention, and a number of studies provided observational evidence for this loss mechanism. The modeling of the bulk populations of electrons at relativistic energies also seemed to favor this mechanism and did not require additional loss processes by EMIC waves. It remained unclear which mechanism operated or dominated during storms, but did explain the most dramatic dropouts of population in the space environment.

Even increased detailed multipoint satellite observations that have been available since the launch of NASA’s Van Allen Radiation Belt Storms Probe seemed unable to provide definitive answers. Real loss of particles may be difficult to infer as it may be masked by variations associated with the variations in the magnetic field or competing acceleration mechanisms that may operate differently at different energies. Furthermore, both proposed loss mechanisms are intensified during storms, making it very difficult to distinguish one from another. Scientists tried to isolate different processes from each other, but the task seemed to be practically impossible to accomplish.

“The unique combination of events that occurred before and during the January 17, 2013 geomagnetic storms finally allowed us to definitively resolve this long-standing scientific question,” says the lead author of the study, Prof. Yuri Shprits.

The combination of conditions during the January 17, 2013 storms provided a very unique coincidence of different factors that finally allowed scientists from GFZ, University of Potsdam, UCLA, Stanford, Berkeley, Augsburg College, LASP, UNH and Sodankylä Geophysical Observatory.to resolve this long-standing scientific problem. Among the lucky coincidences that helped researchers was: 1) that the belts were populated by a previous storm which allowed detectors to measure detailed distributions of particles in space, energy and direction of propagation during this storm; 2) that the most intense fluxes of relativistic and ultra-relativistic were at different locations in the belts, and therefore particle populations did not affect each other; and 3) ultra-relativistic particles were located deep inside the magnetosphere and were not affected by the loss to the magnetopause.

Detailed measurements on Van Allen Probes showed that EMIC waves were indeed scattering particles into the atmosphere but only affected ultra-relativistic electrons while not affecting relativistic particles that were considered in many previous studies. At ultra-relativistic energies, electrons fly extremely close to the speed of light, and in their reference frame rotate around the field line in the same sense as waves. Being in resonance with electrons, waves can very effectively scatter ultra-relativistic elections into the atmosphere. Distributions in radial distance, energy and direction of velocity all provided definitive evidence that this mechanism of loss is most efficient at ultra-relativistic energies. Detailed modeling including EMIC waves showed remarkably good results, basically identical to the observations, once again confirming the conclusions of the study.

This study resolves some fundamental scientific questions about our space environment and may also help understand fundamental processes that occur elsewhere in space (on the Sun, in outer planets, distant galaxies, and exoplanets). Yuri Shprits adds, “This study will also help us predict and now-cast the space environment and protect valuable satellites in space. It may also help develop methods of cleaning up the radiation belts from harmful radiation and make the environment around the Earth friendlier for satellites.” The study involved 2 GFZ graduate students Irina Zhelavskaya and Nikita Aseev.

Description of the illustration (Image Credit, Martin Rother, GFZ, Section 2.3):

Visualization of the Earth‘s magnetic environment, with the magnetic field as a protective shield, generated by the strong internal magnetic field in the Earth's core. Shown is the magnetosphere close around the Earth, capable of trapping energetic particles in the Earth’s Van Allen radiation belts. The magnetic field lines are depicted by blue ribbons twisted in space, while fluxes of the most energetic electrons are partly exposed by cutting through the surfaces of constant flux intensity.

The visualization used the result of the VERB-4D model performed by Nikita Aseev of GFZ’s section 2.3 and the magnetic model of Tsyganenko 89. All aspects of this illustration including the internal magnetic field, dynamics of the Earth’s magnetic field, and dynamics of the particles trapped by the Earth's magnetic field are studied at GFZ's Section 2.3 (Magnetic Field).
Image Credit, Martin Rother, GFZ, Section 2.3.

Title of the study: Yuri Shprits et al.:“Wave-Induced Loss of Ultra-Relativistic Electrons in the Van Allen Radiation Belts” (Nature Communications, 10.1038/NCOMMS12883)

Weitere Informationen:

Link zu Nature Communications: http://www.nature.com/naturecommunications

Josef Zens | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

Further reports about: EMIC GFZ Radiation atmosphere magnetic field satellite satellites space environment speed of light waves

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>