Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new kind of metal in the deep Earth

20.12.2011
The crushing pressures and intense temperatures in Earth's deep interior squeeze atoms and electrons so closely together that they interact very differently. With depth materials change.

New experiments and supercomputer computations discovered that iron oxide undergoes a new kind of transition under deep Earth conditions. Iron oxide, FeO, is a component of the second most abundant mineral at Earth's lower mantle, ferropericlase.

The finding, published in an upcoming issue of Physical Review Letters, could alter our understanding of deep Earth dynamics and the behavior of the protective magnetic field, which shields our planet from harmful cosmic rays.

Ferropericlase contains both magnesium and iron oxide. To imitate the extreme conditions in the lab, the team including coauthor Ronald Cohen of Carnegie's Geophysical Laboratory, studied the electrical conductivity of iron oxide to pressures and temperatures up to 1.4 million times atmospheric pressure and 4000°F—on par with conditions at the core-mantle boundary. They also used a new computational method that uses only fundamental physics to model the complex many-body interactions among electrons. The theory and experiments both predict a new kind of metallization in FeO.

Compounds typically undergo structural, chemical, electronic, and other changes under these extremes. Contrary to previous thought, the iron oxide went from an insulating (non-electrical conducting) state to become a highly conducting metal at 690,000 atmospheres and 3000°F, but without a change to its structure. Previous studies had assumed that metallization in FeO was associated with a change in its crystal structure. This result means that iron oxide can be both an insulator and a metal depending on temperature and pressure conditions.

"At high temperatures, the atoms in iron oxide crystals are arranged with the same structure as common table salt, NaCl," explained Cohen. "Just like table salt, FeO at ambient conditions is a good insulator—it does not conduct electricity. Older measurements showed metallization in FeO at high pressures and temperatures, but it was thought that a new crystal structure formed. Our new results show, instead, that FeO metallizes without any change in structure and that combined temperature and pressure are required. Furthermore, our theory shows that the way the electrons behave to make it metallic is different from other materials that become metallic."

"The results imply that iron oxide is conducting in the whole range of its stability in Earth's lower mantle." Cohen continues, "The metallic phase will enhance the electromagnetic interaction between the liquid core and lower mantle. This has implications for Earth's magnetic field, which is generated in the outer core. It will change the way the magnetic field is propagated to Earth's surface, because it provides magnetomechanical coupling between the Earth's mantle and core."

"The fact that one mineral has properties that differ so completely—depending on its composition and where it is within the Earth—is a major discovery," concluded Geophysical Laboratory director Russell Hemley.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Ronald Cohen | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Earth Sciences:

nachricht Climate Change in West Africa
17.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Determining the Earth’s gravity field more accurately than ever before
13.06.2019 | Technische Universität Graz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>