Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond 3G – ultra-fast mobile radio networks of the future

07.08.2008
Today’s growing third generation (3G) of mobile data services are only a taste of what is to come. Now, European researchers are paving the way to a world where ultra-fast internet access is available from every mobile device

What started out as a luxury item for high-flying executives is now a fashion accessory for teenagers throughout Europe, and increasingly, in the rest of the world. In November 2007 the number of mobile phone subscriptions passed 3.3 billion, more than half the population of the globe. In most EU countries there are now more mobile phones than there are people.

But the real growth today is in the mobile data communication segment, via new 3G digital networks being created by providers. Such 3G services include video telephony and broadband internet access. Industry sources report that the number of EU users of 3G services doubled to 112 million in the year to April 2008.

But what will the next generation of mobile radio networks look like?

The International Telecommunication Union (ITU) is proposing a new global standard, called IMT-Advanced, which aims to provide a coherent framework for all forms of digital wireless technologies, not just mobile phones.

WINNER II, an EU-funded project to explore how IMT-Advanced might be implemented, is a continuation of the original two-year WINNER project (2004-2005) that evaluated promising technologies and came up with a first concept of what new infrastructure might look like. The role of WINNER II was to develop, optimise and validate that technology.

“The output is not a product, of course,” says Dr Werner Mohr of Nokia Siemens Networks, which coordinated the project. “The output is a very clear understanding of what the system should look like. The project has developed an entire system concept and a related reference design for a future air interface. This can be used as input for the standardisation process that is now starting.”

Consensus building
The 38 partners in WINNER II included Europe’s electronic and telecoms giants as well as many universities. The participation of China’s telecommunications regulator in one of the work packages stresses the global importance of the research and the need to build a worldwide consensus.

The work has gone surprisingly smoothly, given the large number of partners and particular interests. Mohr attributes this success to the early planning for the first WINNER project in 2002-2003, before the industrial partners had invested in any technology of their own.

“No-one had anything to lose and therefore we could start a joint development of a new system where everyone could bring in their ideas,” he says. “We started more or less from zero so everyone could gain something.”

Last November the ITU’s World Radiocommunication Conference (WRC) identified frequency bands for future IMT-Advanced services, opening the way for development to begin in earnest.

In the meantime, the WINNER II partners have also contributed to an intermediate standard called LTE (Long-Term Evolution), which will partly fill the gap until IMT-Advanced comes along.

“Technically there are synergies between LTE and WINNER II,” Mohr says. “Our industry partners went to the LTE standardisation and many organisations have taken WINNER results because we already achieved some consensus there. These kinds of projects are supporting consensus building.”

The technologies tested by the WINNER II team will allow future mobile devices to communicate at up to 100 Mbit/s, much higher than most present day fixed broadband speeds.

“Basically you’ll get in a wireless system a similar experience as in your office or your home,” Mohr says.

Challenge for industry
The results from WINNER II, which was funded under the EU’s Sixth Framework Programme for research, will now be developed by the WINNER+ project, which contains many of the same partners and is part of the CELTIC cluster supported by the intergovernmental Eureka initiative.

So when can we expect to see these new capabilities? It depends on when the identified spectrum becomes available.

“In Europe this may not happen before 2015 though in some countries it could be earlier,” says Mohr. “It really depends on conditions in different countries and also on market needs, of course.”

Although European industry quickly took the lead in the 1990s by establishing and building the worldwide GSM standard still in use, Mohr cautions that the market in 2015 will be a very different and more competitive.

“In Europe we have a saturated mobile market,” he says. “Asia is still growing fast but in ten years they will also have a saturated market. The need then will be to improve the capabilities of systems. From an industry perspective we have to offer innovative solutions in order to stay competitive in the global market.”

He believes Europe can still remain competitive in such a market, so long as industry exploits its expertise.

“I think we have to work hard, of course, but there is a good chance because we have the people, the know-how and the means for this kind of co-operation,” Mohr says. “What industry has to do is invest in research and development in order to stay inventive.”

He adds: “Technology is always moving, it’s always improving. We can decide either to be in the group which is improving and innovating or we are not in that group. I think it’s better to be in the group that’s improving.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Communications Media:

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>