Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond 3G – ultra-fast mobile radio networks of the future

07.08.2008
Today’s growing third generation (3G) of mobile data services are only a taste of what is to come. Now, European researchers are paving the way to a world where ultra-fast internet access is available from every mobile device

What started out as a luxury item for high-flying executives is now a fashion accessory for teenagers throughout Europe, and increasingly, in the rest of the world. In November 2007 the number of mobile phone subscriptions passed 3.3 billion, more than half the population of the globe. In most EU countries there are now more mobile phones than there are people.

But the real growth today is in the mobile data communication segment, via new 3G digital networks being created by providers. Such 3G services include video telephony and broadband internet access. Industry sources report that the number of EU users of 3G services doubled to 112 million in the year to April 2008.

But what will the next generation of mobile radio networks look like?

The International Telecommunication Union (ITU) is proposing a new global standard, called IMT-Advanced, which aims to provide a coherent framework for all forms of digital wireless technologies, not just mobile phones.

WINNER II, an EU-funded project to explore how IMT-Advanced might be implemented, is a continuation of the original two-year WINNER project (2004-2005) that evaluated promising technologies and came up with a first concept of what new infrastructure might look like. The role of WINNER II was to develop, optimise and validate that technology.

“The output is not a product, of course,” says Dr Werner Mohr of Nokia Siemens Networks, which coordinated the project. “The output is a very clear understanding of what the system should look like. The project has developed an entire system concept and a related reference design for a future air interface. This can be used as input for the standardisation process that is now starting.”

Consensus building
The 38 partners in WINNER II included Europe’s electronic and telecoms giants as well as many universities. The participation of China’s telecommunications regulator in one of the work packages stresses the global importance of the research and the need to build a worldwide consensus.

The work has gone surprisingly smoothly, given the large number of partners and particular interests. Mohr attributes this success to the early planning for the first WINNER project in 2002-2003, before the industrial partners had invested in any technology of their own.

“No-one had anything to lose and therefore we could start a joint development of a new system where everyone could bring in their ideas,” he says. “We started more or less from zero so everyone could gain something.”

Last November the ITU’s World Radiocommunication Conference (WRC) identified frequency bands for future IMT-Advanced services, opening the way for development to begin in earnest.

In the meantime, the WINNER II partners have also contributed to an intermediate standard called LTE (Long-Term Evolution), which will partly fill the gap until IMT-Advanced comes along.

“Technically there are synergies between LTE and WINNER II,” Mohr says. “Our industry partners went to the LTE standardisation and many organisations have taken WINNER results because we already achieved some consensus there. These kinds of projects are supporting consensus building.”

The technologies tested by the WINNER II team will allow future mobile devices to communicate at up to 100 Mbit/s, much higher than most present day fixed broadband speeds.

“Basically you’ll get in a wireless system a similar experience as in your office or your home,” Mohr says.

Challenge for industry
The results from WINNER II, which was funded under the EU’s Sixth Framework Programme for research, will now be developed by the WINNER+ project, which contains many of the same partners and is part of the CELTIC cluster supported by the intergovernmental Eureka initiative.

So when can we expect to see these new capabilities? It depends on when the identified spectrum becomes available.

“In Europe this may not happen before 2015 though in some countries it could be earlier,” says Mohr. “It really depends on conditions in different countries and also on market needs, of course.”

Although European industry quickly took the lead in the 1990s by establishing and building the worldwide GSM standard still in use, Mohr cautions that the market in 2015 will be a very different and more competitive.

“In Europe we have a saturated mobile market,” he says. “Asia is still growing fast but in ten years they will also have a saturated market. The need then will be to improve the capabilities of systems. From an industry perspective we have to offer innovative solutions in order to stay competitive in the global market.”

He believes Europe can still remain competitive in such a market, so long as industry exploits its expertise.

“I think we have to work hard, of course, but there is a good chance because we have the people, the know-how and the means for this kind of co-operation,” Mohr says. “What industry has to do is invest in research and development in order to stay inventive.”

He adds: “Technology is always moving, it’s always improving. We can decide either to be in the group which is improving and innovating or we are not in that group. I think it’s better to be in the group that’s improving.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Communications Media:

nachricht New cruise ship “Mein Schiff 1” features Fraunhofer 3D sound on board
05.09.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Small enclosure, big sound, clear speech
31.08.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Stanford builds a heat shield just 10 atoms thick to protect electronic devices

19.08.2019 | Information Technology

Researchers demonstrate three-dimensional quantum hall effect for the first time

19.08.2019 | Physics and Astronomy

Catalysts for climate protection

19.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>