Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


VDI presents International Bionic Award of the Schauenburg Foundation


The Fraunhofer IPT and their partners from RWTH Aachen University and the Johannes Kepler Unversity Linz received the “International Bionic Award” for best idea and most commendable interdisciplinary collaboration of production engineers and natural scientists. In a joint project, the team of four developed structures for a unidirectional fluid transport on surfaces of different materials.

During the bionics congress “Patents of Nature”, which took place on 21 October 2016 in Bremen, Kai Winands and Mario Pothen from the Fraunhofer IPT and their research partners Dr. Philipp Comanns from RWTH Aachen University and Gerda Buchberger from the Johannes Kepler University Linz received the ”International Bionic Award” of the Schauenburg Foundation for their outstanding interdisciplinary collaboration in the research areas engineering, computer science, biology and physics.

The developed fluid transport mechanism is based on the integument of the Texas horned lizard

Fraunhofer IPT

VDI presents International Bionic Award 2016 of the Schauenburg Foundation: Junior scientists from Aachen and Linz receive prize money of 10 000 Euros for their joint development.

Labisch/BIC Bremen

The award, which includes a 10 000 Euro prize money, was handed out by the VDI Association – Technologies of Life Sciences and is sponsored by the Schauenburg Foundation.

Since 2008, the International Bionic Award honors and promotes junior scientists and their innovative bionics-related research work. Here, practice-oriented and interdisciplinary work is a central criterion. After all, the research field of bionics offers continuous motivation for multidisciplinary collaborations, yielding promising results with long-term benefits for technology, economy and society.

Lizard integument as inspiration for fluid transport in production technology

The collaboration between the Fraunhofer IPT, RWTH Aachen University and the Johannes Kepler University Linz was motivated by a small reptile: The Texas horned lizard. The scaly structure on its integument enables it to collect smallest amount of water which is then transported towards the snout through thin, half-open capillaries. The joint three-year project “BioLas.exe”, which started in November 2012, aimed at transferring the lizard’s surface structure to complex-shaped technical surfaces made of polymer and metal.

The challenge of the “BioLas.exe” project was to understand and a the special mechanism of the capillaries on the lizard’s integument which thus had to be analyzed in advance so that suitable structure designs for technical applications could be deduced. Subsequently, specially developed software was used to digitally transfer the structures onto free-formed surfaces for the manufacturing of structured components. Ultimately, the optimized fluid transport mechanism could be applied in industrial manufacturing, e.g. for sanitary products or for lubricant transport in car engines. This idea convinced the international jury of the VDI bionics department.

A successive project, “LiNaBioFluid”, was launched in July 2015 which not only draws inspiration from the horned lizard but also from the bark bug. Due to this bug’s wetting properties, it darkens during rainfall as a camouflage strategy and becomes almost invisible in its environment. The EU project aims to understand underlying large-area wetting principles and fluid transport mechanisms by abstracting the animals’ surface properties and transferring them to technical surfaces where it could be an advantage in terms of reducing friction and wear. The interdisciplinary consortium of the “LiNaBioFluid” project consists of seven partners from four different countries. The project is sponsored by the EU program Horizon 2020 FET Open and will conclude in July 2018.

Weitere Informationen:

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

More articles from Awards Funding:

nachricht Million funding for Deep Learning project in Leipzig
15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Advanced Grant for Grain Boundary Phase Transformations
06.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>