Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structural biologist recognized for research on molecular motor structure and function

17.02.2009
The European Molecular Biology Organization (EMBO) and the Federation of European Biochemical Societies (FEBS) announced Anne Houdusse, head of the Structural Motility Team, CNRS/Institute Curie, Paris, France, as the winner of the FEBS/EMBO Women in Science Award for 2009.

The selection committee honoured Anne Houdusse's outstanding contributions to the field of structural biology and the understanding of the molecular mechanism of action of myosins.

The FEBS/EMBO Women in Science Award, now in its second year, recognizes and rewards the exceptional achievements of a female scientist in life sciences research over the previous five years. Winners of the award are role models who inspire future generations of women in science.

Anne Houdusse has established and clarified the molecular structure and function of myosins - a family of motor proteins vital for muscle contraction and motility processes such as cell division or transport of organelles within cells. She has transferred details seen in atomic resolution structures into functional insight and co-developed a theory that describes the movement of the molecular motors during muscle contraction.

The committee praised Anne's originality and research creativity as well as her courage to tackle difficult areas of science and persistence to achieve results.

"We are fortunate to work on a very puzzling and interesting question: how motor proteins convert chemical energy to produce force," said Anne Houdusse. "My laboratory's contribution is just one piece of this incredibly complex and important puzzle, and the current picture is the fruit of the research lead by many brilliant scientists. By trying to understand how to inhibit the activity of specific motors responsible for metastasis or cell proliferation we hope to develop therapeutic strategies against cancer."

The award winner credits the support of the Institute Curie and the dynamic collaboration with several researchers to contribute to the understanding of this fundamental problem in biology.

As group leader at the French National Research for Scientific Research (CNRS) Institute Curie in Paris, Anne Houdusse studies the structure and function of biological macromolecules, using biophysical techniques, particularly X-ray crystallography. She was a post-doctoral fellow at the Brandeis University in Massachusets, USA (1992-1998) where, with Carolyn Cohen and Andrew Szent Györgyi, she laid the foundation for her challenging work on structures of conventional myosins. At CNRS, she works closely with the US-American biologist Lee Sweeney.

The 2009 FEBS/EMBO Women in Science Award of 10,000 euro will be presented to Anne Houdusse on 5 July 2009 at the 34th FEBS Congress in Prague, Czech Republic, where she will present a special lecture.

Nominations for the 2010 FEBS/EMBO Women in Science Award close on 1 September. For more information, please visit: http://www.embo.org/gender/award.html or http://www.febs.org/women-award

Suzanne Beveridge | idw
Further information:
http://www.embo.org/about_embo/press/febs_embo_award09.html
http://www.embo.org/gender/award.html
http://www.febs.org/women-award

More articles from Awards Funding:

nachricht Million funding for Deep Learning project in Leipzig
15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Advanced Grant for Grain Boundary Phase Transformations
06.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>